Определить частоту переменного тока если конденсатор емкостью 500 мкф имеет

Характеристики и свойства

К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

  1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
  2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
  3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
  4. Полярность. При неверном подключении произойдет пробой и выход из строя.
  5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
  6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
  7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад

Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений

Таблица значений фарад

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт

При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33H2 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.

Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.

  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
    • первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9

Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Виды конденсаторов

Конденсатор — это две металлические пластины, разделённые диэлектриком. Различают их по типу диэлектрика, материалу корпуса и способу производства пластин. Есть такие типы конденсаторов:

  • Бумажные. Пластины в нём — металлическая фольга, а диэлектрик — специальная бумага. Запаиваются они обычно в металлический корпус, так как прочностью не отличаются. Нормально себя ведут как в низкочастотных цепях, так и в высокочастотных.
  • Металлобумажные. Отличаются тем, что на бумагу нанесено металлическое напыление. Они более надёжны, при одинаковых  размерах с бумажными имеют большую ёмкость.

  • Электролитические. На металлическую фольгу (тантал или алюминий) наносится оксид, который и выполняет роль диэлектрика. Второй слой диэлектрика — электролит. Он может быть сухим или жидким. Обычно электролитическими называют с жидким электролитом. Электролитические конденсаторы практически всегда поляризованы. И при их подключении, обязательно соблюдать полярность. В противном случае они просто выйдут из строя. Бывают такие подвиды:
    • Хотя конденсаторы с сухим электролитом относятся к тому же типу, их обычно называют танталовыми. Именно с танталом обычно применяют сухой электролит.
    • Алюминиевые электролитические конденсаторы. Это когда на алюминиевую фольгу нанесён триоксид алюминия. Они имеют большую ёмкость при малых размерах, но применяться могут только в низкочастотных схемах. И ещё один недостаток — большой ток утечки.

    • Танталовыми правильно называть конденсаторы из танталовой фольги, в которых диэлектрик — пентоксид тантала. Они так же компактны, как и алюминиевые, но имеют более низкий ток утечки. И ещё — они более прочные механически.
  • Твердотельные или полимерные. В них диэлектрик — полимер. Это относительно новый тип конденсаторов. Они более устойчивы к температуре (как высокой, так и к низкой), имеют маленький ток утечки, низкое эквивалентное сопротивление и большой импульсный ток. Ими можно заменять электролитические аналоги, так как они более стабильны.

  • Плёночные. Ещё один из новых видов конденсаторов. Между металлическими пластинами проложена плёнка пластика. Это может быть поликарбонат, полиэстер, полипропилен и другие полимеры с диэлектрическими свойствами. Они более прочные механически, выдерживают высокие токи имея при этом очень малые токи утечки, стойки к пробою. Свойства отличные, но они имеют небольшую ёмкость. По совокупности характеристик обычно стоят в резонансных цепях (с возможным скачкообразным увеличением параметров).
  • Керамические. На керамическую основу наносится металлизированное напыление. Могут быть однослойными (малой ёмкости) и многослойными. Наиболее компактные конденсаторы, стойкие к механическим воздействиям. Но свойства керамических материалов сильно зависят от температуры, напряжения и частоты. Потому свойства керамических конденсаторов разные и зависят от вида использованной керамики. Для них также введена особая маркировка. Во-первых, потому что имеют малые размеры, а во-вторых, потому что делают из различной керамики и имеют большие отличия в характеристиках.

  • Высокочастотные с воздушным диэлектриком. Это специальные конденсаторы, которые радиолюбителям не встречаются.

Это все виды конденсаторов, которые можно встретить сейчас в продаже и на платах. Как видите, их немало и выглядят они совсем по-разному. Так как часть проблем с техникой связана с выходом их из строя, то неплохо было бы разбираться в их маркировке. Так уйдёт меньше времени на поиск замены.

Резонанс в электрической цепи

Резонанс напряжений

Если в цепи (см. рис. 1) подобрать так емкость С конденсатора и индуктивность катушки, чтобы (~wL = frac 1{wC}, ) то разность фаз между колебаниями силы тока и напряжения φ = 0, т.е. изменения тока и напряжения происходят синфазно. Из этого равенства (~w_{rez} = frac 1{sqrt {LC}}.) Эту частоту называют резонансной. При этом условии Z = R, т.е. полное сопротивление цепи становится наименьшим, амплитуда силы тока при данном напряжении принимает наибольшее значение (рис. 3).

Рис. 3

В этом случае амплитуда напряжения на активном сопротивлении равна амплитуде внешнего напряжения, приложенного к участку цепи (~(U_{0R} = U_0),) а напряжения на катушке индуктивности и конденсаторе одинаковы по модулю и противоположны по фазе:

(~(U_{OL})_{rez} = I_0 w_{rez} L= I_0 L frac 1{sqrt{LC}} = I_0 sqrt {frac LC};)

(~(U_{OC})_{rez} = I_0 frac 1{w_{rez} C}= I_0 frac {sqrt{LC}}{C} = I_0 sqrt {frac LC};)

(~(U_{OL})_{rez} = (U_{OC})_{rez} = I_0 sqrt {frac LC} = frac {U_0}R sqrt {frac LC}.)

При этом (~(U_{OL})_{rez} = (U_{OC})_{rez},) и они могут значительно превышать (~U_0.) Это явление называется резонансом напряжений. Резонанс используется в радио- и электротехнике для усиления колебаний напряжения какой-либо определенной частоты. Его надо учитывать при расчете изоляции электрических линий, содержащих катушки индуктивности и конденсатора, иначе может наблюдаться их пробой.

Резонанс токов

Рассмотрим участок цепи переменного тока, содержащий параллельно включенные конденсатор емкостью С и катушку индуктивностью L (рис. 4).

Рис. 4

Пусть активное сопротивление мало, им можно пренебречь. Если приложенное напряжение изменяется по закону (~U=U_0 sin wt,), то в ветви 1С2 проходит ток

(~I_1 = I_{01} sin (wt + frac {pi}2),) где (~I_{01} = frac {U_0}{frac 1{wC}}.)

В ветви 1L2 проходит ток

(~I_2 = I_{02} sin (wt — frac {pi}2),) где (~I_{02} = frac {U_0}{wL}.)

Таким образом, разность фаз токов в ветвях 1С2 и 1L2 равна π, т.е. колебания токов в ветвях противоположны по фазе. Амплитуда тока во внешней (неразветвленной) цепи (~I_{0C} = left| I_{01} — I_{02} right| = U_0 (wC — frac 1 {wL}).) Если (~w = w_{rez} = frac 1{sqrt {LC}},) то (~I_{01} = I_{02}) и (~I_0 = 0.) Амплитуда силы тока (~I_0) оказалась равной нулю потому, что активным сопротивлением участка пренебрегали. Если учесть сопротивление R, то разность фаз не будет равна π и (~I_0 not = 0,) но (~I_0) примет наименьшее возможное значение, а амплитуды сил токов (~I_{01} ) и (~I_{02}) могут значительно превышать амплитуду силы тока (~I_0.)

Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты w приложенного напряжения к резонансной частоте wrez называется резонансом токов (параллельным резонансом).

Это явление используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы, а также в индукционных печах, где параллельно нагревательной катушке включается конденсатор, емкость которого подбирается так, чтобы при частоте генератора получился резонанс токов, в результате сила тока через катушку будет гораздо больше, чем сила тока в подводящих проводах.

Источник: ledsshop.ru

Стиль жизни - Здоровье!