Конспект по теме двигатели постоянного тока

Действие магнитного поля на проводник с током. Электродвигатели

Опыт Эрстеда показал, что вокруг проводника с током создаётся магнитное поле, которое вызывает отклонение магнитной стрелки.

СИЛА АМПЕРА

Можно наблюдать обратное результатам опыта Эрстеда явление, когда поле магнита действует на проводник с током. Проводник, подключённый к источнику тока, подвесим на тонких проводах. При замыкании цепи проводник двигаться не будет. Но если его поместить между полюсами магнита, то проводник отклонится от своего первоначального положения. Направление движения проводника зависит от направления тока в нём и расположения полюсов магнита.

Проведённый опыт показывает, что магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом. поле.

Эту силу называют силой Ампера, по имени учёного, который впервые обнаружил действие магнитного поля на проводник с током. Как мы видели из опыта, направление силы Ампера зависит от направления тока в проводнике и от направления линий магнитного поля.

Направление силы Ампера можно определить с помощью правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

ВРАЩЕНИЕ РАМКИ С ТОКОМ

В ряде технических устройств широко используется вращение проводника с током в форме рамки, помещённой в магнитное поле.

Вместо проволоки подключим к источнику тока лёгкую проволочную рамку прямоугольной формы. Поместив слева и справа от неё магниты, замкнём цепь и увидим, что рамка повернётся. Если изменить направление тока, то рамка повернётся другой стороной.

Вращение рамки с током можно объяснить тем, что на правую и на левую сторону рамки действуют силы Ампера, направленные в противоположные стороны. Под действием этих сил и происходит вращение рамки. Таким образом, магнитное поле оказывает вращающее действие на рамку с током.

Свойство рамки с током вращаться в магнитном поле используется в электроизмерительных приборах, таких, как вольтметр и амперметр. Рассмотрим принцип действия таких приборов.

Между полюсами дугообразного магнита находится рамка, удерживаемая в положении равновесия пружиной. К рамке прикреплена стрелка, движущаяся по шкале. При протекании через этот прибор электрического тока рамка под действием силы Ампера поворачивается и вызывает отклонение стрелки. При выключении тока пружина возвращает стрелку к нулевой отметке шкалы.

ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ

Вращение рамки в магнитном поле используется также и в электрических двигателях.

Электрический двигатель — это устройство, преобразующее электрическую энергию в механическую работу. Основными частями электродвигателя являются статор и ротор.

Статор (от лат. stator — неподвижный) представляет собой корпус цилиндрической формы, на котором укреплены обмотки, надетые на стальные сердечники. Когда по обмоткам протекает постоянный ток, внутри корпуса возникает магнитное поле.

Ротор (от лат. roto — вращающийся), или якорь двигателя, представляет собой совокупность большого числа рамок, по которым пропускают постоянный ток. Магнитное поле статора действует на рамки, и якорь приходит во вращение.

Чтобы якорь вращался непрерывно, на оси ротора закрепляют коллекторные пластины, которые изменяют направление тока в витках якоря.

Один из первых электродвигателей построил русский учёный, академик Б. С. Якоби в 1834 г. С тех пор электродвигатели получили самое широкое распространение в технике, быту и на транспорте.

В отличие от тепловых двигателей электрические двигатели не выделяют в процессе работы вредных газов, дыма и пара и, следовательно, не загрязняют окружающую среду. КПД электрических двигателей существенно превышает КПД тепловых механизмов.

Борис Семёнович Якоби (1801 — 1874) — русский физик и электротехник, изобрёл электродвигатель, гальванотехнику, исследовал электромагниты.

Вы смотрели Конспект по физике для 8 класса «Действие магнитного поля на проводник с током. Электродвигатели».

Вернуться к Списку конспектов по физике (Оглавление).

Просмотров:
5 426

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Бесколлекторный электродвигатель постоянного тока. Общие сведения и устройство прибора

Контроллеры электродвигателей такого типа зачастую питаются благодаря постоянному напряжению, отчего и получили своё название. В англоязычной технической литературе вентильный электродвигатель называют PMSM или BLDC.

Бесколлекторный электродвигатель был создан в первую очередь для оптимизации любого электродвигателя постоянного тока в целом. К исполнительному механизму такого устройства (особенно к высокооборотному микроприводу с точным позиционированием) ставились очень высокие требования.

Это, пожалуй, и обусловило использование таких специфических приборов постоянного тока, бесколлекторные трёхфазные двигатели, также называемые БДПТ. По своей конструкции они практически идентичны синхронным двигателям переменного тока, где вращение магнитного ротора происходит в обычном шихтованном статоре при наличии трёхфазных обмоток, а количество оборотов зависит напряжения и нагрузок статора. Исходя из определённых координат ротора, происходит переключение разных обмоток статора.

обмотки статора выполняют функцию фиксирующего элемента

Если одна из обмоток будет выключена, то будет измеряться и в дальнейшем обрабатываться тот сигнал, который был наведён, однако, такой принцип работы невозможен без профессора обработки сигналов. А вот для реверса или торможения такого электродвигателя мостовая схема не нужна – достаточно будет подачи в обратной последовательности управляющих импульсов на обмотки статора.

В ВД (вентильном двигателе) индуктор в виде постоянного магнита расположен на роторе, а якорная обмотка – на статоре. Исходя из положения ротора, формируется напряжение питания всех обмоток электродвигателя. При использовании в таких конструкциях коллектора, его функцию будет выполнять в вентильном двигателе полупроводниковый коммутатор.

Основное отличие синхронного и вентильного двигателей заключается в самосинхронизации последнего при помощи ДПР, что обусловливает пропорциональную частоту вращения ротора и поля.

Чаще всего бесколлекторный электродвигатель постоянного тока находит применение в следующих сферах:

  • морозильное или холодильное оборудование (компрессоры);
  • электропривод;
  • системы нагрева воздуха, его кондиционирования или вентиляции.

Статор

Это устройство имеет классическую конструкцию и напоминает такой же прибор асинхронной машины. В состав входит сердечник из медной обмотки (уложенной по периметру в пазы), определяющей количество фаз, и корпус. Обычно синусной и косинусной фаз достаточно для вращения и самозапуска, однако, часто вентильный двигатель создают трёхфазным и даже четырёхфазным.

Электродвигатели с обратной электродвижущей силой по типу укладки витков на обмотке статора делятся на два типа:

  • синусоидальной формы;
  • трапецеидальной формы.

В соответствующих видах двигателя электрический фазный ток меняется также по способу питания синусоидально или трапецеидально.

Ротор

Самыми распространёнными и дешёвыми для изготовления ротора считаются ферритовые магниты, но их недостатком является низкий уровень магнитной индукции, поэтому на замену такому материалу сейчас приходят приборы, созданные из сплавов различных редкоземельных элементов, поскольку могут предоставить высокий уровень магнитной индукции, что, в свою очередь, позволяет уменьшить размер ротора.

ДПР

Датчик положения ротора обеспечивает обратную связь. По принципу работы устройство делится на такие подвиды:

  • индуктивный;
  • фотоэлектрический;
  • датчик с эффектом Холла.

Последний тип получил наибольшую популярность благодаря своим практически абсолютным безынерционным свойствам и способности избавляться по положению ротора от запаздывания в каналах обратной связи.

Система управления

Система управления состоит из силовых ключей, иногда также из тиристоров или силовых транзисторов, включающих изолированный затвор, ведущих к сбору инвертора тока либо инвертора напряжения. Процесс управления этими ключами реализуется чаще всего путём использования микроконтроллера, требующего для управления двигателем огромного количества вычислительных операций.

Принцип действия электродвигателя

В нашем случае, принцип действия тот же, но роль неподвижного однородного магнитного поля играет статор, а рамки – вращающийся ротор электродвигателя, обмотками, который еще называется якорем.

Как видим, два полюса статора создают однородное магнитное поле. Обмотка ротора состоит из двух частей, которые наматываются на его полюсах и соединены между собой последовательно. Концы обмоток замыкаются на разделенных, расположенных на валу электродвигателя коллекторных пластинах. Они имеют физический контакт (трение) с неподвижными щетками из графита, на которые подается пост. ток. Если при подключении соблюсти принцип расположение полюсов тока, как показано на рисунке, то полюс якоря, расположенный на схеме слева, станет условно северным, как и находящийся в непосредственной близости полюс статора электродвигателя.

Естественная реакция на действие магнитных сил заключается в том, что равнозначные полюса отталкиваются. В нашем случае такое возможно только за счет вращения. По инерции, северный полюс якоря, провернувшись на 180º станет напротив южного полюса статора. По логике вещей они должны начать притягиваться, что приведет к торможению. Чтобы этого не допустить, в момент перехода нейтральной линии коллектор переключает обмотки якоря местами, чтобы вновь организовать отторжение полюсов.

Учитывая эту информацию устройство двигателя постоянного тока можно изобразить следующим образом:

Принцип работы двигателя постоянного тока

Функционирование всех современных электромоторов базируется на принципах электромагнитной индукции и так называемом «правиле правой руки», когда ротор начинает вращаться при пропускании разнонаправленного тока вверху и внизу роторной обмотки. Согласно данному правилу, уложенные в якорные пазы проводники выталкиваются из генерируемого статором магнитного поля, тем самым придавая ускорение ротору эл двигателя.

Получается, что верхняя часть обмотки ротора начинает выталкиваться в левую сторону, а нижняя часть – в правую. Эта энергия передается непосредственно валу электромотора, вокруг которого закреплена обмотка, и тот совершает вращательное движение. Однако вращение прекращается, когда ротор проворачивается, и якорные части меняются местами. Для поддержки оборотов в электрическом двигателе постоянного тока П используется коллектор, с помощью которого производится коммутация роторной обмотки.

Теперь рассмотрим наиболее распространенные способы подключения двигателя постоянного тока

Обратите внимание, что оптимальная схема подключения к сети или аккумулятору должна соответствовать мощности силового агрегата. Различают устройства малой, средней и большой мощности

Как работают двигатели

Принцип работы всех видов электродвигателей состоит во взаимодействии магнитных полей ротора и статора. При этом магнитное поле может создаваться постоянным магнитном или обмоткой (катушка-электромагнит).

В зависимости от мощности и типа мотора обмотки могут быть расположены только на статоре или и на статоре и на роторе. Попытаемся объяснить устройство и принцип работы для чайников в электрике.

Начнем с того, что рассмотрим устройство коллекторных электродвигателей. Например, в маленьких коллекторных двигателях постоянного тока, как для радиомоделей, на статоре расположены постоянные магниты, а в роторе намотаны катушки из медного провода. Ток к катушкам ротора такого электродвигателя подаётся через щеточный узел, состоящий из щеток и коллектора. На коллекторе расположены ламели, к которым присоединены выводы обмоток.

После включения питания ротор (якорь) начинает вращаться, на нём закреплен коллектор, а неподвижные щетки касаются попеременно разных пар ламелей коллектора. Через щетки и ламели к обмоткам ротора подаётся ток то на одну обмотку, то на другую, таким образом создавая изменяющееся магнитное поле, которое взаимодействует с полем магнита. В результате полюса вращающегося и неподвижного электромагнитов притягиваются, из-за чего и происходит вращение.

Если опустить некоторые нюансы, то чем больше ток ротора, тем больше это поле и тем быстрее вращается ротор. Однако это применимо в основном для коллекторных машин постоянного и переменного токов (они универсальны).

Если говорить об асинхронном двигателе (АД) с короткозамкнутым ротором — это электродвигатель переменного тока без щеток. В нем обмотки расположены на статоре (а), а ротор представляет собой стержни (б), замкнутые на коротко кольцами — так называемая беличья клетка.

В этом случае вращающееся магнитное поле статора порождает ток в стержнях ротора, из-за которого также возникает еще одно магнитное поле. А что происходит, когда рядом расположены два магнита?

Они отталкиваются или притягиваются друг к другу. Так как ротор закреплен на концах в подшипниках, то ротор начинает вращаться. АД предназначен только для переменного тока, и скорость вращения вала у него зависит от частоты тока и числа полюсов в обмотках статора, подробнее этот вопрос мы рассмотрим в статье об асинхронных электродвигателях.

Но для начала вращения вала такого двигателя важно либо толкнуть его (придать начальную скорость), либо создать вращающееся магнитное поле. Оно создаётся с помощью расположенных определенным образом обмоток, подключенным к трёхфазной электросети (например, 380В), или с помощью пусковых и рабочих конденсаторов (в т.н

конденсаторных асинхронных двигателях).

Кроме взаимодействия магнитных полей в во вращении вала электродвигателя участвует и сила Ампера.

Поэтому нужно понимать, что момент на валу абстрактного двигателя и число оборотов зависят от конструкции и вида электромашины, а также от силы тока и его частоты. Повторюсь, что в этой статье мы не будем углубляться подробно в особенности устройства каждого из видов и типов электродвигателей, а сделаем отдельные статьи для этого.

Стоит отметить, что асинхронные и универсальные коллекторные двигатели наиболее распространены в быту и на производстве, в приводах строительных машин. Они используются везде, как для движения промышленных механизмов, так и для автомобилей, электротранспорта и используемых в бытовой технике, вплоть до электрической зубной щетки.

СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Под возбуждением электродвигателей постоянного тока (ПТ) понимается эффект создания в них ЭДС, обеспечивающей вращение ротора. Их рабочие характеристики зависят от того, каким образом включена обмотка возбуждения (ОВ) по отношению к цепи якоря.

Наиболее распространены следующие схемы подключения:

  • с независимым возбуждением (две обмотки не связаны одна с другой, а ОВ питается от отдельного источника);
  • с параллельным возбуждением или шунтируемого типа (в них ОВ включена параллельно якорной цепочке);
  • с последовательным возбуждением (ОВ включается последовательно с якорной обмоткой).

В ряде случаев, связанных с особенностями эксплуатации двигателей постоянного тока, применяется комбинированная схема включения.

Иногда ее называют «смешанной» или «компаундной» (в ней последовательное подключение совмещается с параллельным). Рассмотрим каждый из перечисленных вариантов более подробно.

Независимое возбуждение.

При этой схеме подключения обмотка возбуждения электрически не связана с катушкой якоря (рис.1). Для снижения тепловых потерь и создания необходимой величины ЭДС число витков в ней делается достаточно большим, что позволяет снизить ток возбуждения.

Регулировать ток в якоре можно посредством резистора Rдоб, включенного последовательно. Частоту вращения можно менять резистором Rрег. Возможность независимого управления параметрами двигателя относят к плюсам этой схемы.

Ее минус – необходимость использования дополнительного источника питания, что приводит к увеличению материальных издержек. Применение схемы с независимым возбуждением определяется особенностями конструкции управляемого электропривода.

Параллельное возбуждение.

Электрическая схема подключения с параллельным возбуждением в целом напоминает рассмотренную выше. Ее особенность – наличие электрической связи ОВ с якорной цепью (рис.2).

Эффективность работы двух рассмотренных схем практически одинакова. Преимущество этого способа включения в том, что в данной ситуации отпадает необходимость в дополнительном источнике питания. Ее минус – невозможность раздельной регулировки параметров электродвигателя.

Принцип работы электродвигателя с последовательным возбуждением.

Особенностью этой схемы является последовательное включение ОВ и якорной цепочки (рис.3). При таком варианте подключения ток якоря является одновременно и током возбуждения (Iя =Iв). Это вынуждает производителей оборудования наматывать ОВ проводом того же сечения, что и у якоря.

Недостаток этой схемы – в том, что скорость двигателя зависит от нагрузки на валу. При ее увеличении падение напряжения на обмотках и магнитный поток возрастают. А это приводит к сильному падению скорости вращения. При снижении нагрузки частота вращения двигателя резко возрастает и может достичь опасных значений (он может начать работать «вразнос»).

Данный вариант применяют в случаях, когда необходимо выдерживать большое пусковое усилие (момент). Или же когда двигателю предстоит работать в режиме кратковременных перегрузок. Схемы с последовательным запуском используются в тяговых двигателях (в метро, трамваях, электровозах и троллейбусах).

Принцип действия двигателя со смешанным возбуждением.

К каждому из полюсов системы со смешанным возбуждением подключено две обмотки: последовательная и параллельная (рис.4). Их допускается включать таким образом, чтобы магнитные потоки суммировались (согласное подключение), либо вычитались один из другого (встречное включение).

В зависимости от того, как соотносятся части каждого из магнитных потоков, двигатель постоянного тока со смешанным возбуждением приближаются по своим свойствам к одному из уже рассмотренных ранее вариантов.

Такие схемы применяются в ситуациях, когда необходим большой по величине пусковой момент и одновременно невозможно обойтись без регулировки частоты вращения вала при переменных нагрузках.

Подключение через микросхему Arduino

Двигатели малой мощности также можно запускать с помощью специальных функциональных платформ. Таким распространенным сейчас способом является подключения моторчика постоянного тока к Ардуино. Напрямую через Arduino подключение лучше не делать, поскольку велика вероятность повредить микросхему. Рекомендуется использовать Н-мост или транзисторы. Такая технология внедрения электромоторов в функциональные контуры предоставляет много возможностей для управления и приведения в движение рабочих частей электромашин, современных транспортных средств и роботизированных механизмов. Можно контролировать не только скорость оборотов моторчика, но и направление его движения.

Прямое подсоединение к выходным портам платформы может не только вызвать их перегорание, но также сведет функциональные возможности управления электромотором к минимуму. Через каждый такой порт может подаваться ток величиной около двадцати миллиампер, а для нормальной работы даже самого компактного электрического моторчика требуется во много раз больше. Поэтому мотор нужно подключить к Ардуино последовательно через регулятор силы подаваемого тока.

Выбирая подходящий двигатель для подключения к микроконтроллеру, следует обратить внимание на следующие характеристики:

  • потребляемый ток, необходимый для нормального функционирования оборудования;
  • напряжение номинальное (наиболее распространенное для таких систем – 12 вольт);
  • вращательный момент – чем он больше, тем мощнее агрегат;
  • скорость оборотов вала электромотора;
  • вес и габариты – предпочтение сейчас отдается миниатюрным моделям.

Легче всего осуществляется последовательное подключение к Ардуино стандартного щеточного электромотора постоянного тока, рассчитанного на силу тока до 5A и рабочее напряжение около 9B. Для этого часто используют транзисторную систему. Но она позволяет только контролировать скорость оборотов. Подключение к микроконтроллеру через H-мост дает возможность также регулировать и направление вращения. 

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии .

  • Электродвигатели используются повсеместно, основные области применения:
  • промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
  • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
  • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1ФункцииОбласти примененияВращающиеся электродвигателиНасосы Вентиляторы Компрессоры Вращение, смешивание, движение Транспорт Угловые перемещения (шаговые двигатели, серводвигатели) Линейные электродвигателиОткрыть/закрыть Сортировка Хватать и перемещать
Системы водоснабжения и водоотведения
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива
Системы канализации
Перекачка нефтепродуктов
Приточно-вытяжная вентиляция, ОВК2, вентиляторы
Системы вентиляции, холодильные и морозильные установки, ОВК2
Накопление и распределение сжатого воздуха, пневматические системы
Системы сжижения газа, системы перекачки природного газа
Прокатный стан, станки: обработка металла, камня, пластика
Прессовое оборудование: обработка алюминия, пластиков
Обработка текстиля: ткачество, стирка, сушка
Смешивание, взбалтывание: еда, краски, пластики
Пассажирские лифты, эскалаторы, конвейеры
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога
Вентили (открыть/закрыть)
Серво (установка положения)
Вентили
Производство
Роботы

Примечание:

  1. ЭД — электродвигатель
  2. ОВК — системы отопления, вентиляции и кондиционирование воздуха

Пусковые токи

Постепенное оснащение ротора двигателя дополнительными элементами, обеспечивающими его бесперебойную работу и исключающими секторальное торможение, возникает проблема его запуска. Но все это увеличивает вес ротора – с учетом сопротивления вала столкнуть его с места становится сложнее. Первым решением этой проблемы, приходящим в голову, может быть увеличение силы тока, подаваемой на старте, но это может привести к неприятным последствиям:

  • защитный автомат линии не выдержит тока и отключится;
  • провода обмотки сгорят от перегрузки;
  • секторы переключения на коллекторе приварятся от перегрева.

Поэтому такое решение можно назвать скорее рискованной полумерой.

Вообще, данная проблема является главным недостатком электродвигателей постоянного тока, но включает в себя основное их преимущество, благодаря которому они незаменимы в некоторых областях. Преимущество это заключается в прямой передаче момента вращения сразу же после пуска – вал (если тронется с места) будет крутиться с любой нагрузкой. Двигатели переменного тока на такое не способны.

Решить эту проблему полностью до сих пор не удалось. На сегодняшний день для пуска таких двигателей используется автомат-стартер, чей принцип работы схож с автомобильной коробкой передач:

  1. Сначала ток постепенно поднимается до пускового значения.
  2. После «сдвига» с места значение тока резко падает и снова плавно поднимается «подгоняя вращение вала».
  3. После подъема до предельного значения сила тока снова снижается и «подгоняется».

Данный цикл повторяется 3-5 раз (рис. 4) и решает необходимость старта двигателя без возникновения критических нагрузок в сети. Фактически, «плавный» запуск по-прежнему отсутствует, однако оборудование работает безопасно, а главное достоинство электродвигателя постоянного тока – крутящий момент – сохраняется.

https://youtube.com/watch?v=cVRABZnd3DY

Источник: ledsshop.ru

Стиль жизни - Здоровье!