Заряд прошедший через поперечное сечение провода за 5 с равен 50 мкл

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову — это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу — это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум — это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе — это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет «протащить» через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его «порвет», то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Единицы измерения тока, напряжения, сопротивления ВеличинаСимволЕдиница измеренияСокращение единицы измерения
Ток I Ампер А
Напряжение V Вольт В
Сопротивление R Ом Ом

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

2 вариант

1. Сила тока, идущего по проводнику, равна 2 А. Какой заряд проходит по проводнику за 10 минут?

1) 0,2 Кл
2) 5 Кл
3) 20 Кл
4) 1200 Кл

2. При увеличении напряжения U на участке электрической цепи сила тока I в цепи изменяется в соответ­ствии с графиком (см. рисунок). Электрическое сопротивление на этом участке цепи равно

1) 2 Ом
2) 0,5 Ом
3) 2 мОм
4) 500 Ом

3. Если увеличить в 2 раза напряжение между концами проводника, а его длину уменьшить в 2 раза, то сила тока, протекающего через проводник,

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображённого на рисунке, равно

1) 11 Ом
2) 6 Ом
3) 4 Ом
4) 1 Ом

5. На цоколе лампы накаливания написано: «150 Вт, 220 В». Найдите силу тока в спирали при включении в сеть с номинальным напряжением

1) 0,45 А
2) 0,68 А
3) 22 А
4) 220000 А

6. Проволочная спираль, сопротивление которой в нагре­том состоянии равно 55 Ом, включена в сеть с напря­жением 127 В. Какое количество теплоты выделяет эта спираль за 1 минуту?

1) 17,595 кДж
2) 20 кДж
3) 230 кДж
4) 658,5 кДж

7. Установите соответствие между физическими величи­нами и единицами измерения этих величин.
К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Сопротивление
В) Работа электрического тока

Единицы измерения

1) Джоуль
2) Ватт
3) Вольт
4) Ампер
5) Ом

8. Электродвигатель подъёмного крана подключён к ис­точнику тока напряжением 380 В, при этом сила тока в обмотке 20 А. Определите КПД подъёмного крана, если он поднимает груз массой 1 т на высоту 19 м за 50 с.

3 вариант

1. Время разряда молнии равно 3 мс. Сила тока в канале молнии около 30 кА. Какой заряд проходит по каналу молнии?

1) 90 Кл
2) 0,1 мкКл
3) 90 кКл
4) 0,1 мКл

2. На рисунке изображён гра­фик зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 8 Ом
4) 4 Ом

3. Если уменьшить в 2 раза напряжение между концами проводника, а его длину увеличить в 2 раза, то сила то­ка, протекающего через проводник,

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображенного на рисунке, равно

1) 9 Ом
2) 8 Ом
3) 4 Ом
4) 3 Ом

5. На корпусе электродрели укреплена табличка с надпи­сью: 220 В, 500 Вт. Найдите силу тока, потребляемо­го электродрелью при включении в сеть.

1) 55 000 А
2) 2,27 А
3) 1,14 А
4) 0,88 А

6. Какую работу совершит электрический ток в течение 2 минут, если сила тока в проводнике 4 А, а его сопро­тивление 50 Ом?

1) 1600 Дж
2) 96 кДж
3) 24 кДж
4) 400 Дж

7. Установите соответствие между физическими величи­нами и формулами, по которым эти величины
определяются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Напряжение
В) Сопротивление

Формула

1) (ρl)/S
2) I2 · R
3) A/q
4) q/t
5) I · U · t

8. Кипятильник нагревает 1,2 кг воды от 12 °С до кипения за 10 минут. Определите ток, потребляемый кипятиль­ником, если он рассчитан на напряжение 220 В. КПД кипятильника 90%. Удельная теплоёмкость воды 4200 Дж/(кг · °С).

Как зависит сила тока в проводнике от сопротивления этого проводника

Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней. Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи. Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Установим, какова эта зависимость, на опыте.

На рисунке изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра. Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько , же раз увеличивается сила тока. Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника. На рисунке показан график зависимости силы тока в проводнике от напряжения между концами этого проводника. На графике в условно выбранном масштабе по горизонтальной оси отложено напряжение в вольтах, а по вертикальной — сила тока в амперах.

Зависимость силы тока от напряжения мы уже установили. На основании опытов было показано, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника

Следует обратить внимание, что при проведении опыта сопротивление проводника не менялось, одна и та же спираль служила участком цепи, на котором измеряли напряжение и силу тока. При проведении физических опытов, в которых определяют зависимость одной величины от другой, все остальные величины должны быть постоянными, если они будут изменяться, то установить зависимость будет сложнее

Поэтому, определяя зависимость силы тока от сопротивления, напряжение на концах проводника надо поддерживать постоянным. Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту. На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различными сопротивлениями. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже в таблице приведены результаты опытов с тремя различными проводниками: В первом опыте сопротивление проводника 1 Ом и сила тока в цепи 2 А. Сопротивление второго проводника 2 Ом, т.е. в два раза больше, а сила тока в два раза меньше. И наконец, в третьем случае сопротивление цепи увеличилось в четыре раза и во столько же раз уменьшилась сила тока. Напомним, что напряжение на концах проводников во всех трех опытах было одинаковое, равное 2 В. Обобщая результаты опытов, приходим к выводу: сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома по имени немецкого ученого Ома, открывшего этот закон в 1827 г. Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению: I=U/R здесь I — сила тока в участке цепи, U — напряжение на этом участке, R — сопротивление участка.Закон Ома — один из основных физических законов. На рисунке зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах показана графически. На этом графике по горизонтальной оси в условно выбранном масштабе отложены сопротивления проводников в омах, по вертикальной — сила тока в амперах. Из формулы I=U/R — следует, что U=IR и R=U/I . Следовательно, зная силу тока и сопротивление, можно по закону Ома вычислить напряжение на участке цепи, а зная напряжение и силу тока — сопротивление участка. Сопротивление проводника можно определить по формуле R=U/I , однако надо понимать, что R — величина постоянная для данного проводника и не зависит ни от напряжения, ни от силы тока. Если напряжение на данном проводнике увеличится, например, в 3 раза, то во столько же раз увеличится и сила тока в нем, а отношение напряжения к силе тока не изменится.

Источник

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод — это шланг. Тонкий провод — это тонкий в диаметре шланг, толстый провод — это толстый в диаметре шланг, можно сказать — труба. Молекулы воды — это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока — это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, «разрезал» его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Ток в полупроводниках и его характеристики

Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом. Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.

Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода. Носителями зарядов полупроводника выступают электроны и дырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой — к n, то через p-n переход станет течь ток за счет созданного ими движения.

При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором — потухшая.

Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…

Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.

Какие бывают виды электрического тока в быту

Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:

  • постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
  • синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
  • пульсирующий, образуемый за счет преобразований различных блоков питания;
  • импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
  • произвольный.

Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.

В современной проводке, питающейся синусоидальным напряжением, работает много полупроводниковых бытовых приборов. Они обладают не линейным сопротивлением, нарушают форму гармоники.

Эти помехи складываются по всей цепи от конкретного потребителя до питающего трансформатора, искажают идеальный синус произвольным образом. В результате изменяется как форма, так и величина питающего напряжения.

Сила тока в проводнике из металла: как используется в бытовых условиях

Способность внутренней структуры металлов по-разному влиять на условия движения направленных зарядов применяется для реализации специфических задач.

Чтобы передать электрическую энергию на большое расстояние используют металлические проводники повышенного сечения с высокой проводимостью: медь или алюминий. Более дорогие металлы серебро и золото работают внутри сложных электронных схемах.

Всевозможные конструкции проводов, шнуров и кабелей на их основе надежно эксплуатируются в домашней проводке.

Для обогревательных приборов применяют вольфрам и нихром,обладающие большим сопротивлением. Оно позволяет разогревать проводник до высоких температур при правильном подборе приложенной мощности.

Этот принцип воплотился в многочисленных конструкциях электрических нагревателей — ТЭН-ах.

Завышенная сила тока в проводнике из металла с хорошей проводимостью, но тонким сечением позволяет создавать предохранители,используемые как токовые защиты.

Они нормально работают в оптимальном режиме нагрузки, но быстро перегорают при бросках напряжения, коротких замыканиях или перегрузках.

Еще несколько десятков лет предохранители массово служили основной защитой домашней проводки. Сейчас их заменили автоматическими выключателями. Но внутри всех блоков питания они продолжают надежно работать.

Расчет сечения провода электропроводки по мощности подключаемых электроприборов

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.

Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке. В случае если сила потребляемого тока электроприбором не известна, то ее можно измерять с помощью амперметра.

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или kVA). 1 кВт=1000 Вт.

Таблица потребляемой мощности/силы тока бытовыми электроприборами

ЭлектроприборПотребляемая мощность, ВтСила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 – 2500 9,0 – 11,4
Морозильники, холодильники 140 – 300 0,6 – 1,4
Мясорубка с электроприводом 1100 – 1200 5,0 – 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 630 – 1200 3,0 – 5,5
Соковыжималка 240 – 360 1,1 – 1,6
Тостер 640 – 1100 2,9 – 5,0
Миксер 250 – 400 1,1 – 1,8
Фен 400 – 1600 1,8 – 7,3
Утюг 900 –1700 4,1 – 7,7
Пылесос 680 – 1400 3,1 – 6,4
Вентилятор 250 – 400 1,0 – 1,8
Телевизор 125 – 180 0,6 – 0,8
Радиоаппаратура 70 – 100 0,3 – 0,5
Приборы освещения 20 – 100 0,1 – 0,4

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит:

7 А + 8 А + 3 А + 4 А = 22 А

С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбор сечения провода для подключения электроприборов к трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.

Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

Электрическая цепь и закон Ома

Три величины — напряжение, электрический ток и сопротивление — могут быть четко представлены в электрической цепи. В простейшем случае она состоит из источника постоянного напряжения и резистора. Резистор подключен к источнику напряжения, а для упрощения возьмем, что сопротивление проводов равно 0 Ом.

Электрическая цепь

Направление электрического тока.

В электротехнике ток течет от плюса до минуса (смотрите рисунок ). Другими словами, как только возникает замкнутая цепь, ток начинает течь от положительного полюса к отрицательному полюсу источника напряжения. Мы говорим о замкнутой цепи, когда два полюса источника напряжения соединены друг с другом сопротивлением.

Как и чем измерять ток и напряжение?

Есть два способа определения силы тока и напряжения. С одной стороны, их можно определить арифметически с помощью закона Ома для участка цепи. С другой стороны, две переменные также могут быть определены путем измерения.

Однако для арифметического определения тока или напряжения должны быть известны две другие величины (напряжение и сопротивление либо ток и сопротивление).

С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.

Итак, ток измеряется так амперметром, который последовательно подключается к потребителю (резистору, лампе накаливания и т. д.), Через который нужно определять ток. На принципиальной схеме он изображен как A внутри круга (см. рисунок 1). Амперметр имеет очень низкое внутреннее сопротивление, чтобы не влиять на ток, который должен протекать через потребителя. В идеале, внутреннее сопротивление амперметра принимается равным 0 Ом и поэтому просто опускается.

Измерение напряжения производится с помощью вольтметра, который замеряет разность потенциалов между двумя его точками подключения. На электрической схеме он обозначен буквой V внутри круга (см. рисунок 1). В отличие от амперметра, вольтметр подключается параллельно нагрузке, на которой измеряется напряжение. Добавление вольтметра параллельно некоторому потребителю (например, резистору) создает току еще один «обходной» путь, что резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально большим сопротивлением.

Вольт-амперная характеристика (ВАХ).

Вольт-амперная характеристика или характеристика UI резистора может быть записана путем приложения к нему различных напряжений и последующего измерения тока. Обычно при омическом сопротивлении достаточно одной точки измерения, которая затем соединяется с началом системы координат. Однако на практике, для целей контроля, выполняют серию измерений с тремя точками измерения.

Затем эти точки измерения отмечаются в системе координат и соединяются. Напряжение откладывают по оси абсцисс, а ток — по оси ординат. Пример ВАХ смотрите на рисунке ниже

Вольт-амперная характеристика

ВАХ может быть использована для определения тока через резистор при определенном напряжении.

Предыдущая
РазноеЭнергия конденсатора
Следующая
РазноеАвтоматические выключатели

Задачи на Сопротивление проводников с решениями

Формулы, используемые на уроках «Задачи на сопротивление проводников»:

Площадь поперечного сечения измеряют в мм2, поэтому в справочниках значения удельного сопротивления проводника приводятся не только в единицах СИ Ом • м, но в Ом • мм2 / м.

Задача № 1.
 Длина алюминиевого провода 500 м, площадь его поперечного сечения 4 мм2 , Чему равно сопротивление провода?

Задача № 2.
 Медный провод с площадью поперечного сечения 0,85 мм2 обладает сопротивлением 4 Ом. Какова длина провода?

Задача № 3.
 Длина серебряного провода 0,6 м, а сопротивление 0,015 Ом. Определите площадь поперечного сечения провода.

Задача № 4.
 Жила алюминиевого провода, используемого для электропроводки, имеет площадь поперечного сечения 2 мм2. Какой площадью поперечного сечения должен обладать никелиновый провод, чтобы длина и сопротивление линии не изменились?

Задача № 5.
 Площади поперечных сечений стальных проволок с одинаковыми длинами равны 0,05 и 1 мм2. Какая из них обладает меньшим сопротивлением; во сколько раз?

Задача № 6.
 Сопротивление проволоки длиной 1 км равно 5,6 Ом. Определите напряжение на каждом участке проволоки длиной 100 м, если сила тока в ней 7 мА.

Задача № 7.
 Имеются два однородных проводника, однако первый в 8 раз длиннее второго, который имеет вдвое большую площадь поперечного сечения. Какой из проводников обладает большим сопротивлением; во сколько раз?

Задача № 8.
 Шнур, употребляемый для подводки тока к телефону, для гибкости делают из многих тонких медных проволок. Рассчитайте сопротивление такого провода длиной 3 м, состоящего из 20 проволок площадью поперечного сечения 0,05 мм2 каждая.

Задача № 9.
 Определите силу тока, проходящего через реостат, изготовленный из никелиновой проволоки длиной 50 м и площадью поперечного сечения 1 мм2, если напряжение на зажимах реостата равно 45 В.

Задача № 10.
Сопротивление проволоки, у которой площадь поперечного сечения 0,1 мм2, равно 180 Ом. Какой площади поперечного сечения надо взять проволоку той же длины и из того же материала, чтобы получить сопротивление 36 Ом?

Таблица удельного электрического сопротивления
некоторых веществ при 20 °С.

Это конспект по теме «ЗАДАЧИ на Сопротивление проводников». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Последовательное соединение проводников
  • Посмотреть конспект по теме Электрическое сопротивление
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Источник: ledsshop.ru

Стиль жизни - Здоровье!