За направление тока в электрической цепи принимают направление движения

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2)

Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т

е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

м

Положим мм . Из формулы (5) получим:

м/с.

Это порядка одной десятой миллиметра в секунду.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Условное направление тока

Хотя физики много знали о токе и могли его измерить, они все же не могли наблюдать отдельные заряды или точную траекторию их движения. Все что они видели, — это последствия протекающего тока, такие как повышение температуры проводника, падение напряжения на резисторе, изменение магнитного поля или осаждение серебра на пластине. В этом контексте тип тока и его направление не имели значения. Два кулона в секунду в форме электронов, текущих от отрицательного к положительному, имеют тот же эффект что и один кулон положительных ионов и один кулон отрицательных ионов, текущие в противоположных направлениях. Так зачем это каждый раз различать? Разве не проще выбрать один знак и одно условное направление?

Если предположим что задача электрического тока — переносить энергию (например через лампочку), то каждый из трех случаев, показанных на рисунке, будет иметь точно такой же эффект.

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов. Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель

Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет

Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель. Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет.

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Электрическая цепь и ее схематическое изображение

ОпределениеЭлектрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

ОпределениеЭлектрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Электрическая проводимость. Определение, единицы измерения.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению. В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах: =[1/Ом]. Виды электропроводимости:

— Электронная проводимость, где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

— Ионная проводимость. Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

— Дырочная проводимость. Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.

Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В электротехнике важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением

Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

Почему надо знать историю физических открытий

Природу электрических явлений пытались объяснить многие исследователи задолго до открытия электрона (1897 г.). Впервые к пониманию о существовании двух типов зарядов — положительных и отрицательных пришел американский физик Бенджамин Франклин в 1747 г. На основе своих наблюдений он предположил (выдвинул гипотезу), что существует некая “электрическая материя”, состоящая из мелких, невидимых частиц. Он же первым ввел обозначение для электрических зарядов “−” и “+”. Франклин предложил считать, что если тело наполняется электрической материей, то оно заряжается положительно, а если оно теряет электричество, то заряжается отрицательно. В случае замыкания (соединения) цепи положительный заряд потечет туда, где его нет, то есть к “минусу”. Эта плодотворная гипотеза стала популярной, получила свое признание среди ученых, вошла в справочники и учебные пособия.

Конечно, после открытия отрицательно заряженного электрона, эта “нестыковка” реального направления движения с ранее общепринятым была обнаружена. Однако, мировым научным сообществом было принято решение оставить в силе предыдущую формулировку о направлении тока, поскольку в большинстве практических случаев это ни на что не влияет.

В случае необходимости, для объяснения отдельных физических эффектов в полупроводниках и искусственных материалах (гетероструктурах), принимается во внимание настоящее направление движения электронов. Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель

Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет

Бенджамин Франклин знаменит еще как выдающийся политический деятель, дипломат и писатель. Он является одним из авторов конституции США. В знак признания заслуг Франклина на купюре номиналом в 100 долларов с 1914 г. изображен его портрет.

Рис. 3. Изображение купюры 100 долларов США с портретом Бенджамина Франклина.

Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

  • Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
  • Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
  • Измерение тока
  • Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов. Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны).

Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис.

2.

Рис. 2 Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.

Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.

В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник за единицу времени.

Как обозначается сила тока?

Сила тока обозначается буквой I

Сила тока

I = q/t

I — сила тока

q — заряд

t — время

Сила тока измеряется в амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Чтобы хорошо запомнить теорию, нужно много практики. Классический курс по физике для 10 класса в онлайн-школе Skysmart — отличная возможность попрактиковаться в решении задач.

Опыт Рикке

Возникает логичный вопрос: а не изменяется ли проводник из-за того, что из него «ушли» электроны? Опыт по подтверждению того, что все электроны одинаковые, был проведён немецким учёным Рикке (Рис. 4) тогда, когда на трамвайных линиях использовали три разных проводника: алюминиевый и два медных.

Рис. 4. Карл Виктор Рикке (

)

Рикке в течение года наблюдал за последовательным соединением трёх проводников: медь + алюминий + медь. Поскольку ток в трамвайных линиях течёт довольно большой, то эксперимент позволял дать однозначный ответ: одинаковы ли электроны, которые являются носителями отрицательного заряда в разных проводниках.

За год масса проводников не изменилась, диффузии не произошло, то есть структура проводников осталась неизменной. Из этого следовал вывод, что электроны могут переходить из одного проводника в другой, но структура их при этом не изменится.

Правило правой руки, определение

Если направление движения буравчика совпадает с направлением тока внутри проводника, то ручка буравчика показывает направление вектора магнитной индукции.

Как пользоваться:

  • обхватить проводник ладонью правой руки;
  • большой палец направить вверх;
  • остальные пальцы покажут направление силовых линий магнитного поля этого тока (равно и направление вектора магнитной индукции).

Ток всегда течет от точки с большим потенциалом к точке с меньшим, то есть от «плюса» к «минусу».

Смысл правила

Легко понять правило буравчика на примере обычного штопора. Он и выступает в роли буравчика как специального инструмента с резьбой, направленной вправо (вкручивается по часовой стрелке).

Применение

Можно использовать не только в электричестве — для определения направления магнитного поля. Также помогает определять угловую скорость.

Движение частиц и направление тока

Прежде всего, следует отметить, что не все движущиеся заряженные частицы вызывают образование тока. Например, под действием тепла заряды будут двигаться, но это движение – хаотическое и ненаправленное. Если же к тепловому движению добавляется действие электрическое поле, то под его влиянием хаотические перемещения частиц примут определенную направленность.

Заряженные частицы, образующие ток, движутся в направлении, в зависимости от знака их заряда. То есть, движение положительно заряженных частиц происходит от «+» к «-», а отрицательно заряженных, наоборот, от «-» к «+». Встречное движение характерно для газовой и электролитической среды, поэтому часто возникает вопрос, каким будет настоящее направление тока?

По общему соглашению было принято решение считать направление движения частиц с положительными зарядами, за направление электрического тока. В этом случае возникает некоторое противоречие, затрагивающее металлические проводники, в которых перенос зарядов осуществляется свободными электронами. Хорошо известно, что они двигаются от минуса к плюсу. Тем не менее, приходится считать направление тока в этом случае, противоположным движению свободных электронов. Однако, несмотря на некоторые неудобства, данное правило четко определяет, в каком направлении движется электрический ток.

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу». Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному. Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния. Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом направлении). Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Общий ток для всех

Развитие технологий и производства означало, что электричество постепенно покинуло лаборатории и начало проникать в дома. Коммерциализация электроэнергии потребовала унификации правил и положений и упрощения предположений. Появились электростанции, электросети и электроника. Созданы профессии электрика и электронщика. Благодаря созданию условного направления тока они могли использовать несколько простых и универсальных формул в своей повседневной работе, а более сложные вопросы, связанные с теорией электричества, оставить физикам и ученым.

В общем, что касается тока, учёные до конца не понимают это и сейчас. Но благодаря тому что выбрали условное направление от плюса к минусу, ток всегда будет течь в одном и том же направлении даже если произойдут новые открытия — стандартизация в этом вопросе лучшее решение.

   Форум по обсуждению материала В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

КОНТРОЛЛЕР МОЩНОГО DC МОТОРА

Схема с полевым транзистором контроллера вентилятора высокой мощности на 12 В.

ИОНИСТОРЫ В СХЕМАХ БЕСПРОВОДНОЙ СВЯЗИ

Теория и практика применения суперконденсаторов в различных системах беспроводной связи IoT.

ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА

Обзор китайского устройства для электролиза воды — фото, видео, описание работы.

СХЕМЫ ЭЛЕКТРОМАГНИТНЫХ ПИСТОЛЕТОВ

Приводится несколько рабочих схем электромагнитных Gauss Gun. Первая часть сборника.

ток течет от плюса к минусу или наоборот?

На самом деле — НАВСТРЕЧУ ДРУГ-ДРУГУ!

«Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.

. В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места. _https://fb.ru/article/99367/napravlenie-toka-ot-minusa-k-plyusu-ili-naoborot_

Сущность электричества

Случайное движение электронов в теле существует всегда. Называется оно тепловым. Из-за того, что электрон имеет маленькую массу, скорость движения носителя заряда довольно высокая. При комнатной температуре она составляет примерно 100 км/с. Создать направленное движение, получить ток, можно и самостоятельно с помощью простых предметов. Для этого понадобится приготовить:

  1. 2 электрометра — устройства, позволяющие обнаруживать электрические заряды.
  2. Проводник.
  3. Лист пластика.
  4. Бумагу.

После трения бумаги о пластик произойдёт электризация предметов. На них начнут скапливаться заряды одного знака. Это можно проверить, поднеся пластиковый лист к замкнутым проводником электрометрам. Стрелки на приборах отклонятся в одну и ту же сторону. Происходит это из-за скопления носителей частиц. Если убрать проводник, заряды не смогут вернуться, то есть оба электрометра останутся заряженными.

Проверить, какой заряд находится в устройствах, можно с помощью эбонитовой палочки. Известно, что если её потереть о шёлк, на ней скапливаются отрицательные частицы. Поднеся её к электрометрам, можно обнаружить, что на одном стрелка вернётся в исходное состояние, а на втором отклонится ещё больше. Другими словами, первое устройство будет характеризоваться избытком электронов, а второе — их недостатком.

Теперь если соединить 2 противоположно заряженных электрометра проводником, стрелки вернутся к нулю. Произошедшее можно объяснить существованием электрического поля. Под его действием элементарные носители зарядов начинают двигаться в проводнике. Из места, где их больше, они перемещаются туда, где их меньше. Это и есть направленное движение электрозарядов, то есть электрический ток.

Итак, при соединении проводником противоположно заряженных предметов возникает направленное движение электронов. О существовании электрического тока учёные узнали в конце XVIII веке. Но электроны были открыты только в XIX веке (1897 год). Физики, когда получили электроток, понимали, что происходит движение зарядов, но какова их природа, не знали, поэтому решили принимать за направление электрического тока движение положительных частиц. Это решение, как выяснилось в дальнейшем, оказалось не совсем корректным.

Причины появления

Заряженные частицы начинают перемещаться благодаря действию различных источников питания. К их числу принадлежат батареи, аккумуляторы, генераторы и другие устройства, способные превращать всевозможные виды энергии в электрическую. Во время этих преобразований наглядно проявляется закон сохранения энергии. Частицы начинают движение в тот момент, когда электрическая цепь замыкается, что приводит к появлению в проводнике электрополя.

Именно оно и оказывает определенное воздействие на свободные частицы. Во время исследований ученые установили, что каждый источник электротока обладает электродвижущей силой (ЭДС). Следует помнить, что электроны не появляются благодаря источнику питания, а присутствуют в материале проводника. Они начинают двигаться под прямым воздействием электрополя, так как не связаны атомными связями и являются свободными.

В качестве примера можно привести замкнутую систему труб, воду в которых перекачивает насос. В зависимости от размеров труб и числа ответвлений, жидкость будет перемещаться в них с разной скоростью.

Официальное электричество

Между 1881 и 1904 годами было проведено несколько собраний Международного электрического конгресса (МЭК), на котором был установлен ряд общих электромагнитных единиц, таких как ом, вольт, фарад и кулон. Именно в этот период было создано официальное определение электрического тока.

Единицей измерения электрического тока является ампер, а устройства для измерения тока называются амперметрами. Первый амперметр был в виде серебряной пластинки, которую погружали в раствор нитрата серебра. Под действием протекающего тока серебро выпало из раствора и оседало на пластине. Взвесив пластину до и после ученые определили, что один ампер тока соответствует осаждению 0,001118 грамма серебра в секунду. Это определение изменилось с годами, и сегодня один ампер — это поток заряда и значение одного кулона за одну секунду.

Источник: ledsshop.ru

Стиль жизни - Здоровье!