Удельное сопротивление при нагреве проводов

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

S = (2*I*L)/((1/p)*ΔU.

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

Измерение сопротивления кабеля мультиметром

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

2.1.1. Физическая природа электропроводности металлов

Металлы имеют кристаллическое строение: в узлах кристаллической решетки находятся положительно заряженные ионы, окруженные коллективизированными электронами (электронным газом).

Современные представления об электронном строении металлов, распределении электронов по энергетическим состояниям, их взаимодействии с другими элементарными частицами и кристаллической решеткой дает квантовая теория, основы которой были разработаны советским ученым Я.И.Френкелем и немецким физиком А.Зоммерфельдом.

Читать также: Самодельные коптильни горячего копчения своими руками фото

Свободные электроны хаотически перемещаются по кристаллу со средней тепловой скоростью и = 10 5 м/с. В электрическом поле напряженностью Е электроны получают добавочную скорость упорядоченного движения v – скорость дрейфа, благодаря чему и возникает электрический ток. Плотность тока зависит от скорости дрейфа, заряда электрона е и концентрации свободных электронов n .

Скорость дрейфа в реальных условиях существенно меньше скорости теплового движения электронов v u . Так, в медном про-

воднике при плотности тока j = 1 А/мм 2 скорость дрейфа составляет v = 1 . 10 -4 м/с.

За время τ между столкновениями с узлами кристаллической решетки на длине свободного пробега l , электроны, двигаясь с уско-

рением a = e E , приобретают скорость дрейфа: m e

Приравнивая аналитическое выражение закона Ома (1.1) к выражению (2.1) с учетом (2.2), получим формулу для удельной проводимости

Выразим произведение m e . и через концентрацию свободных электронов, используя квантовую статистику, базирующуюся на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон, а на каждом энергетическом уровне – не более двух (с антипараллельными спинами). Тогда при температуре абсолютного нуля ( Т = 0 К) половина из общего числа свободных электронов в кристалле ( n /2) займет наиболее низкие энергетические уровни.

В квантовой теории вероятность заполнения электронами энергетических состояний с энергией уровня Э определяется функцией Ферми

где Э F – энергия Ферми, т.е. максимальная энергия, которую может иметь электрон в металле при температуре абсолютного нуля.

Из формулы (2.4) следует, что при Э = Э F , вероятность заполнения электронами уровня Ферми равна 0,5. Энергия Ферми для большинства металлов составляет от 3 до 15 эВ. Уровни, расположенные ниже уровня Ферми ( Э Э F ), с вероятностью >0,5 заполнены электронами, а уровни, лежащие выше уровня Ферми ( Э > Э F ), с такой же вероятностью свободны от электронов.

В соответствии с квантовой статистикой Ферми-Дирака концентрация свободных электронов в металле определяется путем интег-

рирования по всем заполненным энергетическим состояниям, что дает следующее выражение

Выразив из этого соотношения значение энергии Ферми через концентрацию электронов и, учитывая, что Э F = m e и 2 2 , получим

Подставляя m e и в формулу (2.3), найдем выражение для

удельной проводимости металлов

Концентрация свободных электронов в чистых металлах, характер их распределения по энергиям и энергия Ферми с повышением температуры почти не изменяются. Например, при нагреве серебра от 0 до 1000 К энергия Ферми уменьшается лишь на 0,2%. Такие малые изменения в широком температурном диапазоне можно не учитывать. Следовательно, формула (2.6) справедлива при любой температуре. Поэтому электропроводность металла определяется, в основном, средней длиной свободного пробега электронов, которая зависит от электронного строения атомов и типа кристаллической решетки. Длина свободного пробега для некоторых металлов дана в табл. 1.

Длина свободного пробега электронов в некоторых металлах при 0 ° С

Наибольшая длина свободного пробега наблюдается в металлах с гранецентрированной кубической кристаллической решеткой (Ag, Cu, Au), которые и являются лучшими проводниками.

Переходные металлы (Fe, Ni, Co, Cr, Mn, V, Zr, Nb, Mo, W, Hf, Ta, Re, Pt и др.) имеют меньшую электропроводность, что связано с их специфическим электронным строением. В этих элементах внутренние d – или f -оболочки неполностью заполнены электронами. В электрическом поле часть валентных электронов из внешней s – оболочки переходят на свободные уровни внутренних оболочек, что приводит к уменьшению числа свободных электронов, участвующих в проводимости.

Особенности электронного строения переходных металлов являются причиной многих их специфических свойств: тепловых, магнитных, склонности к полиморфизму, переменной валентности и др.

И в заключение, у чистых металлов при нагреве средняя энергия электронов практически остается без изменения, что свидетельствует о малой теплоемкости электронного газа.

Таблица удельных сопротивлений проводников

Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль 0,015 0,0175 0,023 0,025. 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095. 0,1 0,1 0,103. 0,137 0,12 0,22 0,42 0,43. 0,51 0,5 0,6 0,94 1,05. 1,4 1,15. 1,35 1,2 1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Удельное сопротивление меди и алюминия для расчетов

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.

Советую почитать данный документ, т.к. там много чего полезного.

В этом документе приводится формула для расчета потери напряжения и указано:

р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;

Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.

Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.

R1=R0

R0 – сопротивление при 20 градусах Цельсия;

R1 — сопротивление при Т1 градусах Цельсия;

Т0 — 20 градусов Цельсия;

α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);

R1/R0=1,25

1,25=1+α (Т1-Т0)

Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.

Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?

Советую почитать:

Расчет сопротивления заземлителя (программа)

Расчет необходимого количества светильников при заданной освещенности

Проектирование и расчет заземлителей

Пример расчета нагрузок жилого дома со встроенными помещениями различного типа по СП 31-110-2003

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением

и обозначается греческой буквойρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r

– сопротивление проводника в омах;ρ – удельное сопротивление проводника;l – длина проводника в м;S – сечение проводника в мм².

Пример 1.

Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2.

Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3.

Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4.

Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5.

Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления

и обозначается буквой α.

Если при температуре t

0 сопротивление проводника равноr 0 , а при температуреt равноr t , то температурный коэффициент сопротивления

Примечание.

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t

r t

=r 0 .

Пример 6.

Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t

=r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7.

Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Удельное сопротивление

Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.

Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм 2 /м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.

Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает переходное контактное сопротивление, повышает срок службы и уменьшает нагрев контактов. При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.

У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10 -8 Ом*мм 2 /м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют медную электропроводку. У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10 -6 Ом*мм 2 /м.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Технологии

Высоковольтные провода нулевого сопротивления

Данный тип проводов широко применяется в системах зажигания автомобилей. Сопротивление высоковольтных проводов достаточно мало и составляет несколько долей ома на метр длины. Напомним, что сопротивление такой величины невозможно измерять омметром общего применения. Зачастую для задачи измерения малых сопротивлений применяют измерительные мосты. Конструктивно такие провода имеют большое количество медных жил с изоляцией на основе силикона, пластмасс или других диэлектриков. Особенность применения таких проводов заключается не только в работе при высоком напряжением, но и передаче энергии за короткий промежуток времени (импульсный режим).

Биметаллический кабель

Основная сфера применения упомянутых кабелей – передача высокочастотных сигналов. Сердечник провода изготавливают из металла одного типа, поверхность которого покрывают металлом другого типа. Поскольку на высоких частотах проводящим является только поверхностный слой проводника, то есть возможность замены внутренности провода. Тем самым достигается экономия дорогостоящего материала и повышаются механические характеристики провода. Примеры таких проводов: медь с нанесением серебряного покрытия, сталь с медным покрытием.

Температурный коэффициент сопротивления

Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

ΔR = α*R*ΔT, где α — температурный коэффициент электрического сопротивления.

Источник: ledsshop.ru

Стиль жизни - Здоровье!