Учебное пособие расчет токов короткого замыкания

Расчет токов трехфазного короткого замыкания в точке К2

5.1 Для среднего положения регулятора РПН трансформатора Т3

5.1.1 Суммарное сопротивление до точки К2:

Х∑==Х1+Х2+Х3ср=3,018+0,02025+86,789=89,827 (Ом) R∑=R2+К3=0,006+4,391=4,397 (Ом)

5.1.2 Ток трехфазного короткого замыкания:

5.1.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.1.4 Ударный ток короткого замыкания:

5.2 Для минимального положения регулятора РПН трансформатора Т3

5.2.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 96,577 кВ:

5.2.2 Ток трехфазного короткого замыкания:

5.2.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.2.4 Ударный ток короткого замыкания:

5.3 Для максимального положения регулятора РПН трансформатора Т3

5.3.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 126 кВ:

5.3.2 Ток трехфазного короткого замыкания:

5.3.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.3.4 Ударный ток короткого замыкания:

Пример расчета тока однофазного КЗ

В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в , а во втором варианте справочные таблицы из .

С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».

Исходные данные:

  • масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
  • от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
  • от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.

Рис.1 — Расчетная схема сети эл. двигателя

Вариант I

1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс < 0,1Хт) :

где:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2. По таблице 2 определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.

3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 :

где:

  • Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 ;
  • l1 = 0,120 км – длина участка №1.
  • Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 ;
  • l2 = 0,150 км – длина участка №2.

4. Определяем ток однофазного КЗ:

Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас .

Вариант II

Определим ток однофазного КЗ по справочным таблицам из .

1. По таблице 2.4 определяем сопротивление трансформатора Zт/3 = 33,6 мОм.

2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 :

где:

  • Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 ;
  • l1 = 120 м – длина участка №1.
  • Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 .

Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля

Если же посмотреть , то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из .

3. Определяем ток однофазного КЗ:

Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.

Литература:

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г. 2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

2.1. Порядок измерения прибором MZC-300, MZC-303E

2.1.1 Условия выполнения измерений и получения правильных результатов

Чтобы начать измерение, необходимо соблюдение нескольких условий. Измеритель автоматически блокирует возможность начала измерений (это не касается измерения напряжения сети) в случае обнаружения каких-либо из ниже перечисленных ненормальных условий:

Ситуация Отображаемые символы и предупреждающие сигналы Пояснения Напряжение, приложенное к измерителю, больше 250В. Надпись OFL и длительный звуковой сигнал. Незамедлительно отсоедините измеритель от испытуемой сети! Нарушена целостность провода PE/N. Отображается символ _—_ и звучит продолжительный звуковой сигнал

Символ и звуковой сигнал появляются после нажатия клавиши Необходимо принять меры предосторожности, так как в испытуемой сети отсутствует защита от сверхтоков! Напряжение, приложенное к измерителю, слишком мало для измерения сопротивления – менее 180В. Отображается надпись -U- и звучат два длинных звуковых сигнала

Надпись и звуковые сигналы появляются после нажатия клавиши Термическая защита блокирует измерение, что возможно при очень интенсивных измерениях. Отображается символ Т на дисплее и звучат два длинных звуковых сигнала. Символ и звуковые сигналы появляются после нажатия клавиши Во время Автокалибровки сумма полного сопротивления цепи и полного сопротивления измеряемого провода очень велика. Вместо результата измерения отображается символ ]-[, прибор дополнительно генерирует два длинных звуковых сигнала.

Измеритель также сигнализирует о ситуации, в которой результат измерения не может быть признан верным: ¦ Если элементы питания разряжены, то на дисплее попеременно с результатом измерения напряжения отображается надпись bAt . Заданное измерение можно произвести, однако полученные результаты не могут быть основанием для правильной оценки электробезопасности испытуемой электроустановки.

2.1.2 Способы подключения измерителя

Рис.6. Измерение в рабочей цепи (L-N)

Рис. 7. Измерение в защитной цепи (L-PE) а) сети TN (с занулением) б) сети ТТ (с защитным заземлением)

Рис. 8. Тестирование эффективности защиты корпуса электроустановки

Измеритель подключается к тестируемой цепи или к устройству как показано на Рис.6, 7 и 8

Следует обратить внимание на правильный подбор измерительных наконечников, так как точность выполняемых измерений сильно зависит от качества выполненных подключений. Следует обеспечить хорошее соединение и сделать возможным непрерывное протекание большого измерительного тока

Недопустимо, например, присоединение зажима «Крокодил» к грязным или ржавым элементам — необходимо их тщательно очистить или использовать для измерений остроконечные зонды.

2.1.3 Измерение напряжения переменного тока

Приборами семейства MZC-300 можно измерить напряжение переменного тока в диапазоне 0. 250В. Прибор измеряет напряжение между измерительными гнёздами L и PE/N. Входное сопротивление вольтметра не менее 150 кОм. Включение режима вольтметра происходит автоматически после включения питания измерителя, а также примерно через 5 секунд после: • Выполнения измерения полного сопротивления, ожидаемого тока короткого замыкания либо сопротивления измерительного провода (во время Автокалибровки); • Последнего нажатия какой-либо из клавиш, связанных с выводом на дисплей результатов измерения.

Какие бывают виды

Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.

Будет интересно Что такое статическое электричество и как от него избавиться

Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.

Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.

Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.

Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение

Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток

Возгорание розетки

Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.

Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.

Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.

Защита блока питания от короткого замыкания.

Измерение тока КЗ

Расчёт КЗ необходим для правильного подбора устройств, способных защищать цепи от этого явления, поэтому крайне важно знать, до какой величины может подняться ток при замыкании в определённой точке. Выполнение работ предполагает определение сопротивления линии от места измерений до трансформаторной подстанции

Затем по результатам выполняется расчёт токов трёхфазного КЗ или однофазного, в зависимости от типа используемой электролинии.

При возникновении аварийной ситуации замыкания фазы на фазу или на корпус фактически появляется новая электрическая цепь — «петля» короткого замыкания. Есть несколько способов, с помощью которых можно определить величину сопротивления линии КЗ:

  • метод вычисления напряжения в обесточенной цепи;
  • способ определения падения разности потенциалов на нагрузочном импедансе;
  • измерение полного сопротивления цепи.

Посчитать импеданс петли можно, создав искусственное короткое замыкание. Для этого используют специальные приборы. Они позволяют сначала измерить напряжение без подключённой нагрузки, а затем при включении малоомного резистора (до 10 Ом) в течение короткого времени (порядка 10 миллисекунд).

Полное сопротивление линии состоит из активной и реактивной составляющей. Расчёт выполняют по формуле: Z = √ (R2 + (Xl + Xc)2). Чтобы рассчитать импеданс линии, состоящей из множества элементов, используют эквивалентную схему, состоящую из резисторов. Все данные трансформаторов, линий, различных электрических компонентов, необходимые для расчётов, приведены в справочных таблицах. Выполняя приведение, получают простую схему, состоящую из двух сопротивлений — активного и реактивного.

Выполнять можно расчёт токов КЗ в именованных единицах и относительных. Для нахождения номинальных параметров системы применяют стандартные формулы: Zn = U / P и I = P / √ (3 * U). Связь между единицами можно установить, выразив параметры через базисные значения. Z = Zn * (Un 2/Sn). При упрощённых вычислениях принято делать расчёт токов КЗ в относительных единицах.

Что влияет на значение тока короткого замыкания

При эксплуатации электросети важно мониторить параметры её качества, основной их которых – напряжение. Об этом я писал в одной из прошлых статей

Как известно, чтобы узнать напряжение, нужен вольтметр. Но и без него можно легко узнать, что с напряжением что-то не так – например, по тусклому свечению лампочек (в случае низкого напряжения) либо по перегоранию электроприборов при повышенном напряжении.

С током короткого замыкания не всё так просто – его значение может «гулять», и это не будет особо заметно. А проявится это в самый неподходящий момент – например, когда при замыкании электропроводки не сработает автоматический выключатель. Поэтому рекомендуется проверять (рассчитывать и/или измерять) ток КЗ периодически – перед проектированием электрощита, после ввода электропроводки в эксплуатацию, а затем – раз в год.

В любом измерении тока КЗ нужно понимать, что измеренный или расчетный ток КЗ относится только к конкретной точке электросети, применительно к которой производится измерение и расчет. Невозможно предугадать, в каком месте состоится замыкание, поэтому обычно измерения проводят в двух местах – в электрощите и самой удаленной от него точке.

Плохую службу может послужить тот факт, что ток КЗ является величиной непостоянной, зависящей от многих факторов. Например, ток КЗ в отдельно взятой розетке может меняться от событий, которые практически не поддаются фиксации:

  • Замена питающего трансформатора на ТП;
  • Замена любого участка электрической сети, в том числе высоковольтного;
  • Изменение состояния защитного и коммутационного оборудования (рубильники, автоматические выключатели и т.д.);
  • Увеличение или уменьшение напряжения в точке КЗ, которое может происходить по нескольким причинам;
  • Ухудшение или улучшение контакта (изменение переходного сопротивления) в любой точке сети – от клемм питающего трансформатора до клемм нашей розетки;
  • Ухудшение контакта (вплоть до полного обрыва) нейтрального проводника.

Косвенно о низком токе КЗ можно сказать и без приборов, опираясь на такие факты:

  • Удаленность от трансформаторной подстанции;
  • Низкая мощность трансформатора;
  • Нестабильность напряжения в зависимости от времени суток или при включении мощных электроприборов.

Чем плох и хорош низкий и высокий ток КЗ, я подробно рассмотрел в первой части статьи (ссылку давал в начале).

Популярное изложение закона Ома

До детального изучения явления нужно вспомнить базовые определения из школьного курса физики. Основные зависимости описывает известная формула (закон Ома):

I = U / R,

где:

  • I – сила (величина) тока в амперах (А), которая определяет плотность энергии в контрольном участке и при достаточной величине способна разогреть проводник до высокой температуры;
  • U – напряжение (ЭДС, разница потенциалов между определенными точками);
  • электрическое сопротивление (R) – препятствует прохождению электрического тока, увеличивается при нагреве проводника.

Закон Ома для участка цепи

«Магический» треугольник помогает запомнить основные формулы для расчета. Взаимные зависимости рассматриваемых параметров часто поясняют на примере с трубопроводом:

  • ток (движение заряженных частиц) подобен потоку;
  • напряжение – разница давления на входе и выходе;
  • сопротивление – внутренний диаметр, ограничивающий пропускные способности транспортной системы.

По приведенным аналогам несложно догадаться о том, что тонкий (толстый) проводник затрудняет (упрощает) прохождение тока. Дополнительные ограничения объясняются проводимостью определенного материала и наличием посторонних примесей.

Неустранимые ограничения

Электрическая энергия в любой момент времени находится в распоряжении потребителей- (см. гл. 2). Это, однако, не означает, что эта энергия может быть использована без ограничений. При определении условий поставки электроэнергии потребителям различают два этапа — прогностический, учитывающий будущие запросы потребителя, оперативный, учитывающий имеющиеся характеристики потребительского оборудования на местах

На первом этапе принимают во внимание главным образом те запросы мощности, которые делает абонент. Эти мощности сравнивают с мощностью к.з., которая характеризует возможности сети, и далее осуществляют выбор величины напряжения и точек присоединения новых потребителей

На втором этапе уточняют требуемую мощность (оказывается обычно меньше) и проверяют возможную перегрузку сети, особенно в связи с потреблением реактивной энергии, сопровождающим потребление активной. Небесполезно уточнить два упомянутых понятия: мощность к.з. и реактивная энергия,

Измерение тока КЗ. Выводим формулы

Итак, самый распространенный метод измерения тока КЗ – метод падения напряжения, который мы сейчас и проверим на практике. Этот метод – косвенный, то есть итоговое значение получается путем измерения некоторых параметров с дальнейшими расчетами по формулам. Эти формулы мы сейчас и получим. Конечно, не без помощи нашего немецкого коллеги, о котором мы знаем из уроков физики.

Для начала – несколько пояснений. Предлагаю условиться, что розетка – это источник напряжения, обладающий внутренним сопротивлением Ri. Это сопротивление фактически является сопротивлением цепи «фаза-ноль». Также для простоты изложения условимся не учитывать реактивную составляющую, т.е. принимаем cos φ = 1. Таким образом, получаем такую схему, к которой можем применить закон Ома для полной цепи:

Схема для пояснения закона Ома для полной цепи

Иными словами, получаем резистивный делитель напряжения, напряжение на выходе которого всегда ниже, чем на входе. Сопротивление Ri «олицетворяет» собой все сопротивления, которые встречаются на пути электроэнергии – от сопротивления обмоток трансформатора на подстанции (ТП) до переходного сопротивления клемм розетки, через которые подключается нагрузка с сопротивлением Rн.

Напряжение Uхх – это напряжение холостого хода, которое будет действовать на вторичной обмотке трансформатора, когда нагрузка не подключена. Uн – напряжение на нагрузке, которое всегда меньше Uхх. В расчетах будет фигурировать и номинальное напряжение Uном, которое обычно бывает равным 220 или 230 В.

Наша задача – рассчитать ток короткого замыканияIкз, который равен току, протекающему через внутреннее сопротивление источника питания Ri, при напряжении холостого хода Uхх и нулевом сопротивлении нагрузки (Rн = 0, Uн = 0). Таким образом, наша основная формула будет иметь такой вид:Iкз=Uхх/Ri (0)

Напряжение холостого хода легко узнать – оно измеряется вольтметром, когда вся нагрузка на данной линии отключена.

Теперь дело за малым – определить внутреннее сопротивление источника (сопротивление петли «фаза-ноль») Ri. Это можно сделать тремя способами, про которые я сейчас расскажу.

Расчет петли «фаза-ноль» через ток нагрузки

Сопротивление Ri теоретически не зависит от приложенного к нему напряжения. Поэтому, мы можем измерить ток нагрузки Iн и напряжение на Ri не в момент короткого замыкания, а при подключении нагрузки с ненулевым сопротивлением. А затем применить закон Ома:

Ri=(Uхх-Uн)/Iн (1)

Ток нагрузки можно измерить двумя способами – при помощи амперметра (прямого включения или через трансформатор тока) и применяя токоизмерительные клещи. Амперметр дает более точное измерение, клещи – более оперативное. Я использовал клещи, но можно применить и амперметр, встроенный в мультиметр.

Расчет петли «фаза-ноль» через сопротивление нагрузки

Вторую формулу можно получить, составив уравнение пропорциональности между сопротивлениями Ri и Rн, и напряжениями на них. Получаем:

Ri=(Uхх-Uн)·Rн/Uн (2)

Чтобы использовать формулу (2), нужно предварительно измерить сопротивление нагрузки при помощи омметра. Поскольку мы условились, что реактивную составляющую мы не учитываем, для чистоты эксперимента нагрузка обязательно должна быть активной. Я использовал масляные обогреватели – их сопротивление чисто активное, и не зависит от напряжения и наличия питания. Как вариант, в качестве нагрузочного сопротивления можно использовать утюг или электрочайник.

Расчет петли «фаза-ноль» через мощность нагрузки

Третий способ – самый простой, но его можно применить только тогда, когда мы точно знаем мощность нагрузки.

Составляющие закона Ома зависят от номинальной мощности нагрузки Рном, поэтому путем нехитрых манипуляций получаем следующую формулу:

Ri=(Uном(Uхх-Uн))/Pном (3)

Чтобы проводить расчеты по формуле (3), нужно знать номинальное напряжение Uном (220 или 230 В) и мощность нагрузки. Обычно их приводит производитель. Вот фото шильдика нагревателя с Uном = 230 В и Рном = 1500 Вт:

Шильдик нагревателя мощностью 1500 Вт

Забегая вперед, скажу, что этот способ – наименее точный, поскольку производитель может писать любые данные, преследуя маркетинговые или другие цели.

Теперь, рассчитав значение Ri наиболее удобным способом по формулам (1), (2) или (3), можно найти ток короткого замыкания по формуле (0) даже в домашних условиях. Чем мы наконец-то и займемся.

Источник: ledsshop.ru

Стиль жизни - Здоровье!