Высоковольтная линия электропередач переменного тока

Провода для воздушных линий электропередач

Главное требование к проводам ВЛЭП — высокая механическая прочность. Делятся на два класса — неизолированные и изолированные. Могут быть выполнены в виде многопроволочных и однопроволочных проводников. Последние, состоящие из одной медной или стальной жилы, применяются только для строительства трасс низкого напряжения.

Многопроволочные провода для воздушных линий электропередач могут быть выполнены из стали, сплавов на основе алюминия или чистого металла, меди (последние, вследствие высокой стоимости, на протяженных трассах, практически не используются). Наиболее распространены проводники, изготовленные из алюминия (в обозначении присутствует буква «А») или сталеалюминиевых сплавов (марка АС или АСУ (усиленные)). Конструктивно представляют собой скрученные стальные проволоки, поверх которых навиты алюминиевые жилы. Стальные, для защиты от коррозии, оцинковывают.

Выбор сечения производят в соответствии с передаваемой мощностью допустимого падения напряжения, механических характеристик. Стандартные сечения проводов, производимых в России, — 6, 10, 16, 25, 35, 50, 70, 95, 120 и 240. Представление о минимальных сечениях проводов, применяемых для сооружения воздушных линий, можно получить из таблицы, приведенной ниже.

Минимальные сечения проводов ВЛЭП
Материал жилы Линии свыше 1 кВ, мм2 Линии до 1 кВ, мм2 Ответвления к вводам (длина до 10 м/ свыше 10 м), мм2
Медь 25 2,5
Сталь 25 25 4/4
Алюминий 356 16 6 / 10

Ответвления выполняют чаще изолированными проводами (марки АПР, АВТ). Изделия имеют атмосферостойкое изоляционное покрытие и стальной несущий тросик. Соединения проводов в пролетах монтируют на участках, не подверженных механическим воздействиям. Сращивают их обжатием (с применением соответствующих приспособлений и материалов) либо свариванием (термитными шашками или специальным аппаратом).

В последние годы при возведении воздушных линий все чаще используют самонесущие изолированные провода. Для ВЛЭП низкого напряжения промышленностью выпускаются марки СИП-1, -2 и -4, а для линий 10-35 кВ — СИП-3.

На трассах напряжением свыше 330 кВ, для предотвращения коронных разрядов, практикуется применение расщепленной фазы — один провод большого сечения заменяется несколькими меньшими, скрепленными между собой. С ростом номинального напряжения их число увеличивается от 2 до 8.

Габариты воздушных линий электропередач

Воздушная линия характеризуется таким показателем, как габарит. Габарит позволяет определить вертикальное расстояние от самой нижней точки провода до земли, водоема, связных коммуникаций, железной дороги, автомобильного шоссе и прочих поверхностей. Этот показатель четко регламентируется правилами устройства электроустановок.

Габариты воздушной линии устанавливаются на определенном допустимом уровне. На них влияет мощность коммуникаций, посещаемость местности людьми. Соответствие представленного показателя существующим нормам позволяет эксплуатировать и обслуживать систему максимально безопасно.

При наибольшей стреле провеса вертикальное расстояние до земли должно составлять минимум 6 м. Если линии электропередач проходят в малонаселенной местности, то этот показатель может быть уменьшен.

В труднодоступных отдаленных районах этот показатель может составлять всего лишь 3,5м. Если линия проходит в местности, где люди не бывают вообще, габариты может составить 1м.

Недопустимо, чтобы воздушная линия проходила над зданиями. Линии протягивают над лесом, посадкой, прочими зелеными насаждениями. Расстояние до крон деревьев должно составлять не менее 1м.

Кабельная линия электропередачи

Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.

В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.

Рис. 8. Прокладка силовых кабелей в помещении и на улице

По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.

Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.

Значение слова «Транспозиция (в электротехнике)»

Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи

(ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км.

Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.

Большая Советская Энциклопедия М.: «Советская энциклопедия», 1969-1978

23.Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии.

Будем считать, что режим конца линии задан фазным напряжением U

ф=сonst и отстающим током нагрузкиI 2. Также заданыZ 12=r 12+jx 12,в 12.

Необходимо определить 1) напряжение в начале линии – U

1,2) ток в продольной части –I 12, 3) потери мощности — S 12 4) ток в начале линии –I 1.

Расчет состоит в определении неизвестных токов и напряжений, последовательно от конца линии к началу.

Емкостный ток в конце линии 1-2, по закону Ома:

Ток в продольной части линии 1-2, по первому закону Кирхгофа:I

12=I 2+I к с12: (2)

Напряжение в начале линии по закону Ома:U

1ф=U 2ф+I 12Z 12: (3)

Емкостный ток в начале линии:

Ток в начале линии по первому закону Кирхгофа:

Потери мощности в линии (в трех фазах):S

12=3I 2 12Z 12: (6)

Способы

Отключению ВЛЭП для ремонта предшествуют продолжительные согласования, которые сами по себе представляют большой объем работы. А многие предприятия при отключении испытывают существенные затруднения в своей работе и терпят убытки. По этим причинам ремонт воздушных линий электропередачи под напряжением является основным и первостепенным. Он выполняется с использованием двух схем:

  • в электроизолирующих перчатках при напряжении до 35 кВ (метод «в контакте») а также с использованием изолирующей штанги при напряжении от 6 до 220 кВ (метод «на расстоянии»).
  • в специальных устройствах, которые имеют изолирующие свойства и размещают людей на уровне проводов на опорах ВЛЭП, что допускает касание руками проводов и других элементов воздушных линий электропередачи без средств защиты при напряжении от 6 до 1150 кВ (метод «на потенциале»).

Работа методом «в контакте» происходит с использованием изолирующих перчаток, а также инструмента с изолирующими ручками. Все провода за исключением рабочего закрываются изолирующими экранами. Все движения рабочего должны быть в пределах заштрихованной безопасной зоны. Он стоит на изолирующей лестнице. На рабочем надет специальный костюм с изолирующими элементами. Если длины лестницы недостаточно применяется подъемник с изолирующей платформой.

Работа методом «на расстоянии» предусматривает использование изолирующих штанг, которыми рабочий выполняет необходимые операции, находясь либо на опоре ВЛЭП, либо на платформе подъемника. Движения рабочего должны быть в пределах заштрихованной зоны, показанной на изображениях далее.

Безопасная зона определяется с учетом пробивных напряжений воздушных промежутков между работником и токоведущими частями.

Работа методом «на потенциале» (провод – человек – изоляция – земля) предусматривает обязательное использование экранирующей спецодежды. Она защищает человека от влияния электрического поля, создаваемого проводом с высоким напряжением. Потенциал рабочего места за счет надежной изоляции и установки шунта на пути протекания тока через рабочего, выполняющего ремонт, делается равным потенциалу провода.

Решающее значение для выполнения ремонта воздушных линий электропередачи имеет погода. При повышенной сверх 90% относительной влажности подобные работы запрещаются. Гололед, иней, снег, туман и дождь также отменяют ремонт ВЛЭП. Приближающаяся гроза, а тем более уже начавшаяся так же исключает ремонт воздушных линий электропередачи до полного прояснения неба, высыхания изоляторов и проводов. В ветреную погоду из-за их раскачивания могут уменьшиться безопасные расстояния. Изолирующие штанги будут получать дополнительные нагрузки, и работать с ними станет сложнее. Максимально допустимое значение для скорости ветра составляет десять метров в секунду.

При выполнении ремонта ВЛЭП используется различные специальные приемы:

  • для доставки работников к изоляторам и проводам;
  • при ремонте изоляторов.

Для этого используются специальные подъемники, полимерные изоляторы, бесконечный изолирующий канат и другие приспособления. Один из многих примеров такого ремонта показан далее на изображении:

Подписка на рассылку

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

Сопротивление

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий. Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Сила тока

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

Источник

Прошлое, настоящее и будущее HVDC

HVDC является оптимальным решением для связи сетей стран, разделенных морем. Так ветка между итальянским городом Чепагатти и муниципалитетом Котор в Черногории, которая экспортирует электроэнергию в Италию, пролегает по дну Адриатического моря — используй эта 400-километровая ветка переменный ток, емкостные потери в кабеле были бы слишком большими, и это бы удорожало стоимость электроэнергии для Италии. Кстати, в строительстве этой линии участвовала Toshiba: мы поставили преобразователи напряжения.

Но всё же больше всего Toshiba поучаствовала в строительстве HVDC-сетей в Японии, где исторически сложилась очень необычная ситуация: западная часть страны эксплуатирует ток с частотой 60 Гц, а восточная — 50 Гц. Эта коллизия, которую уже невозможно устранить, возникла еще в конце XIX века, когда Япония одновременно закупила генераторы в Европе и США с выходной частотой тока 50 Гц и 60 Гц соответственно. Результатом поспешного решения далекого прошлого стала вынужденная необходимость строить HVDC-ветки для соединения энергосистем разных частей страны.

HVDC-сети и вставки постоянного тока в Японии помогала строить Toshiba. Первой стала вставка для соединения внутри страны сетей на 50 Гц и 60 Гц, построенная в 1977 году при участии Toshiba. Ее мощность на момент постройки составила 600 МВт. К 2021 году Toshiba провела глубокую модернизацию вставки, увеличив ее мощность на 900 МВт и уменьшив число используемых тиристоров, что позволило немного сэкономить на оборудовании.

Первая высоковольтная линия постоянного тока, длиною 193 км, связала острова Хоккайдо и Хонсю в 1979 году. Сеть передает 300 МВт с напряжением 250 кВ. В 2000 году мы поставили тиристорные конверторы для мощнейшей подводной HVDC-линии между островами Сикоку и Хонсю — ветка передает 1400 МВт. На момент строительства линии в ней использовались самые крупные в мире тиристоры, которые в следующий раз применялись только 10 лет спустя при постройке китайской HVDC Lingbao 2.

Третья японская HVDC, построенная между островами Хоккайдо и Хонсю, была запущена совсем недавно — в 2019 году. Toshiba выступила главным поставщиком преобразователей на полярных транзисторах с изолированными затворами (IGBT).

На сегодняшний день в мире построено более 150 сетей HVDC и 50 вставок постоянного тока. Среди них есть как объекты, построенные в 1970-х годах прошлого века, так и совсем новые. Около 10 HVDC в Европе находятся в стадии строительства прямо сейчас с планируемым сроком запуска 2021-2025 годы. Строящиеся линии соединяют некоторые европейские страны с Великобританией (для выравнивания нагрузки на европейскую энергосеть), тянуть до которой подводный HVAC бессмысленно.

Однако интерес к HVDC-сетям в последние годы растет, и причина тому — «зеленая» энергетика. В отличие от угольных, газовых и атомных электростанций, возобновляемые источники энергии имеют очень четкую географию: в одних областях больше солнечных дней, в других чаще и стабильней дует ветер.

В Германии около 63 ГВт установленной мощности приходится на ветряные электростанции, 7,8 ГВт из которых — оффшорные станции, расположенные в Северном море в десятках километров от берега. Если нужно передать гигаватты мощности от «ветряков» по кабелям, лежащим под водой, лучшим выбором будет, как вы помните, сеть постоянного тока.

В Австралии компания Sun Cable готовится приступить к постройке гигантской фотовольтаической (солнечной) электростанции, мощностью 14 ГВт. Причем электроэнергию с нее будут потреблять не в Австралии, а в Сингапуре, куда она будет поступать по подводной HVDC-сети.

Чем больше в мире будет появляться масштабных проектов, связанных с возобновляемыми источниками энергии, тем сильнее будут востребованы высоковольтные линии постоянного тока. Не стоит фантазировать о том, что однажды мечты Эдисона осуществятся и в наших розетках переменное напряжение сменится постоянным, — этого не будет, пожалуй, никогда. Тем лучше, что переменный и постоянный токи пришли к органичному сосуществованию и взаимовыручке в деле электроснабжения планеты.

Аварийные ремонты ЛЭП

Для организации аварийных ремонтов создаются оперативно-выездные бригады (ОВБ). Они комплектуются:

  • соответствующим инструментом;
  • приспособлениями для ремонтных работ;
  • транспортом для доставки персонала и инструмента к месту повреждения;
  • средствами защиты;
  • средствами безопасного подъема на опоры;
  • комплектом материалов, требуемых для проведения ремонтных работ.

В задачу ОВБ входит выезд к месту повреждения и восстановление работоспособности воздушной линии. Безопасность работ обеспечивается отлаженным взаимодействием старшего электромонтера бригады и диспетчерской службой, в управлении которой находится линия.

Ремонт проводов ВЛ

Виды повреждений воздушных линий:

  • разрушение или перекрытие поверхности изоляторов;
  • обрывы проводов под действием ветра, старения проводников, падения деревьев;
  • захлестывание проводов;
  • разрушение элементов опор или падение опор.

Для определения аварийного участка на протяженных линиях используются средства определения расстояния до места повреждения. Объехать всю линию в поисках поврежденного изолятора или оборванного провода невозможно, а время, затраченное на ремонт, и без того требуется минимизировать. Ведь пока линия находится без напряжения, потребители остаются без энергоснабжения.

Первый метод основан на измерении тока и напряжения в линии в момент короткого замыкания в ней. Измерения производятся автоматически на обоих концах линии специальными устройствами. Затем по имеющимся данным рассчитывается расстояние до места повреждения, определяется предполагаемый район на карте расположения ЛЭП. Эти данные с описанием возможного характера повреждения передаются ОВБ. Современные средства диагностики и фиксации режимов коротких замыканий позволяют получать эти данные автоматически, сообщая оператору конечный результат.

Микропроцессорное устройство для определения места повреждения в ЛЭП

Второй метод основан на использовании рефлектометров – приборов для определения расстояния до повреждения на отключенной линии. Прибор подключается по очереди к поврежденной и неповрежденным фазам. Он выдает в линию короткий сигнал, который, отражаясь от неоднородностей на ее токопроводах, возвращается обратно. Измеряя время от момента подачи сигнала до его возвращения, прибор определяет расстояние до неоднородности. Для сравнения и уточнение результатов, снимают показания на неповрежденных фазах, на которых прибор покажет расстояние до конца линии.

Короткое замыкание на воздушной линии отключается релейной защитой, но после этого в работу включается устройство автоматического повторного включения (АПВ). С выдержкой по времени оно вновь включает линию в работу. Связано это с тем, что причины короткого замыкания порой устраняются в ходе аварии под действием электрической дуги, и оборудование вновь оказывается работоспособным. Если после срабатывания АПВ замыкания не произошло, линия остается в работе, если оно повторилось – линию выводят в ремонт. Существуют АПВ однократного и многократного действия, а в некоторых ситуациях автоматика может его и запретить.

25.Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии.

Задано напряжение в конце линии U

2=сonst . Известна мощность нагрузкиS 2, напряжениеU 2, сопротивление и проводимость линииZ 12=r 12+jx 12,в 12.

Необходимо определить напряжение U

1, мощности в конце и в начале продольной части линииS к 12, S н 12, потери мощности S 12, мощность в начале линииS 1. Для проверки ограничений по нагреву иногда определяют ток в линииI 12.

Расчет аналогичен расчету при заданном токе нагрузке (I2), и состоит в последовательном определении от конца линии к началу неизвестных мощностей и напряжений при использовании I закона Кирхгофа и закона Ома. Будем использовать мощности трех фаз и линейные напряжения.

Зарядная (емкостная) мощность трех фаз в конце линии:

Мощность в конце продольной части линии по I закону Кирхгофа:

Потери мощности в линии:S

12=3I 2 12Z 12=

Ток в начале и в конце продольной ветви линии одинаков.

Мощность в начале продольной ветви линии больше, чем мощность в конце, на величину потерь мощности в линии, т.е. S

н 12=S к 12+S 12

Линейное напряжение в начале линии по закону Ома равно:

Емкостная мощность в начале линии: —jQ

н c12=

Мощность в начале линии:

Под влиянием зарядной мощности Q

с реактивная мощность нагрузкиQ 2 в конце, схема замещения уменьшается. Аналогичное явление имеет место и в начале схемы замещения, где реактивная мощностьQ с уменьшает реактивную мощность в начале линии.

Это свидетельствует о том, что зарядная мощность сокращает реактивную мощность, поступающую от станции в линию для питания нагрузки. Поэтому зарядная мощность условно может рассматриваться как “генератор” реактивной мощности.

В линии электрической сети имеют место как потери, так и генерация реактивной мощности.

От соотношения потерь и генерации реактивной мощности зависит различие между реактивными мощностями в начале и конце линии.

Источник

От ГОЭЛРО до ЕЭС

Следующая классификация описывает инфраструктуру и функциональное назначение воздушных линий электропередач.

По охвату территории сети подразделяют:

  • на сверхдальние (напряжение свыше 500 кВ), предназначенные для связи региональных энергетических систем;
  • магистральные (220, 330 кВ), служащие для их формирования (соединения электростанций с распределительными сооружениями);
  • распределительные (35 — 150 кВ), основное предназначение которых поставка электроэнергии крупным потребителям (объектам промышленности, аграрного комплекса и крупным населенным пунктам);
  • подводящие или питающие (ниже 20 кВ), обеспечивающие энергоснабжение остальных потребителей (городских, промышленных и сельскохозяйственных).

Воздушные линии электропередач имеют важное значение в формировании Единой энергетической системы страны, основа которой была заложена еще при реализации плана ГОЭЛРО (Государственная электрификация России) молодой Советской республики около столетия назад для обеспечения высокого уровня надежности энергоснабжения, его отказоустойчивости. По топологической структуре и конфигурации ВЛЭП могут быть разомкнутыми (радиальными), замкнутыми, с резервным (содержащим два и более источника) питанием

По топологической структуре и конфигурации ВЛЭП могут быть разомкнутыми (радиальными), замкнутыми, с резервным (содержащим два и более источника) питанием.

По числу параллельных цепей, проходящих по одной трассе, линии разделяют на одно-, двух- и многоцепные (под цепью понимается полный комплект проводов трехфазной сети). Если цепи имеют различные номинальные значения напряжения, то такую ВЛЭП называют комбинированной. Цепи могут крепиться как на одной опоре, так и на разных. Естественно, в первом случае масса, габариты и сложность опоры возрастают, но сокращается охранная зона линии, что в густонаселенной местности иногда играет решающую роль при составлении проекта.

Дополнительно используют разделение воздушных линий и сетей, исходя из исполнения нейтралей (изолированная, глухозаземленная и т. д.) и режиму работы (штатный, аварийный, монтажный).

Источник: ledsshop.ru

Стиль жизни - Здоровье!