Временная анкеровка проводов вл 10 кв расценка

Включение КТП-1000 в работу

Подготовить силовой трансформатор к включению согласно инструкции по эксплуатации трансформатора. Установить пререключатель обмоток ВН трансформатора в нулевое положение.

Запереть дверь камеры трансформатора и двери между РУ различного напряжения на замок.

Предупредить персонал о подаче напряжения, вывесить, если необходимо, плакаты безопасности.

Проверить наличие и исправность средств пожаротушения.

Включение КТП-1000 на рабочее напряжение производится по наряду после выполнения организационных и технических мероприятий, указанных в настоящем руководстве, и приемки КТПН в эксплуатацию комиссией потребителя с участием представителей Ростехнадзора и местной энергоснабжающей организации.

Последовательность операций при включении КТП-1000 в сеть:

  1. Установить рукоятки всех выключателей и разъединителей в положение «отключено»;
  2. Снять переносные заземления и проверить ошиновку на отстуствие посторонних предметов;
  3. Закрыть двери камеры трансформатора на замки;
  4. Закрыть дверь между РУНН и РУВН (если имеется);
  5. Включить линейный разъединитель ВЛ (подать напряжение на питающий кабель);
  6. В РУВН включить вводной выключатель и шинный разъединитель ячейки ввода;
  7. Включить выключатель ячейки силового трансформатора;
  8. Осмотреть РУВН и трансформатор, не проникая за ограждающие конструкции, на предмет отсутствия искрений и посторонних шумов;
  9. Закрыть наружные двери РУВН и трансформаторного отсека;
  10. В РУНН включить шинный разъединитель и вводной автоматический выключатель (рубильник) ячейки ввода, проверить величину напряжения заведомо исправным переносным измерительным прибором, сверить по измерительным приборам, установленным в КТП-1000;
  11. Включить шинные разъединители и автоматические выключатели отходящих линий 0,4 кВ;

Порядок сдачи в эксплуатацию

После завершения монтажа ВЛ 0,4 кВ, сдавая объект в эксплуатацию производитель работ обязан:

  • Предоставить пакет обязательных документов, состав которого определяется действующими нормативными требованиями.
  • Провести приёмосдаточные испытания на соответствие требованиям ПУЭ.

В ходе испытаний производятся:

  • Контроль параметров соединительной и контактной арматуры (выборочно, в пределах 2 – 15%), включающий наружный осмотр и измерение электрического сопротивления контакта.
  • Замеры сопротивления изоляции на всех участках (при проверке мегомметром на 1000 В показания не должны быть не ниже 0,5 МОм) и испытания высоким напряжением.
  • Проверка маркировки жил в зажимах (соединительных и ответвительных).
  • Контроль заземляющих устройств, в ходе которого производится визуальный осмотр на предмет оценки качества резьбовых соединений и сварных швов и измерение сопротивления заземлителей на разных участках. По результатам замеров вычисляется ток однофазного замыкания.
  • Проверка габаритов ВЛИ и стрел провеса СИП.

При обнаружении в ходе проводимых испытаний отклонений от строительных требований, объект не должен приниматься в эксплуатацию.

Требования к воздушным линиям 0,4 кВ:

ВЛ 0,4 кВ должна выполняться в трехфазном 4-проводном исполнении по радиальной схеме проводами одного сечения по всей длине линии (магистрали) от подстанций 10/0,4 кВ. ВЛ 0,4 кВ выполняются только с использованием самонесущих изолированных проводов.

Протяженность линий должна ограничиваться техническими условиями по критерию качества напряжения, надежности электроснабжения потребителя и экономическими показателями (техническими потерями электроэнергии в линии и затратами на ее распределение).

На вводах к абонентам устанавливать устройства для ограничения потребляемой мощности (совместная работа с энергосбытовой организацией). Устройства ограничения мощности должны обеспечивать автоматическое отключение абонента от электрической сети в случае превышения мощности его электроустановок и обратное включение с выдержкой времени.

Конструктивное исполнение

КТП-1000 представляет собой сборно-сварную металлоконструкцию. Корпус подстанции выполнен с каркасом из стальных профилей, имеющих стойкое покрытие, обеспечивающее повышенную коррозийную стойкость и современный дизай. Корпус подстанции обшит оцинкованными листами толщиной 1,2 мм.

Возможно изготовление КТП-1000 «северного» исполнения.

Корпус КТП-1000 как правило, представляет собой:

  • распределительное устройство высокого напряжения РУВН-6(10) кВ с ячейками типа КСО,
  • отсек силового трансформатора,
  • распределительного устройства низкого напряжения РУНН-0,4 кВ с ячейками типа ЩО.

Компоновка КТП-1000 и ее габариты — зависят от схемы электрических соединений, количества ячеек и трансформаторов. Отсеки КТП-1000 разделены металлическими перегородками, и имеют отдельные двери, запирающиеся замками.

Для вентиляции и охлаждения установленных внутри отсека аппаратов — двери имеют проемы с жалюзи. В отдельных случаях камера трансформатора может быть снабжена осевым вытяжным вентилятором.

В РУВН и РУНН подстанции ячейки располагаются в один ряд с образованием коридора обслуживания. Модули КТП-1000 комплектуются приборами освещения, отопления и вентиляции с готовой разводкой проводов, что позволяет выполнять монтаж подстанции в более короткие сроки.

Высоковольтный ввод, по заказу, выполняется воздушным, с установкой на крыше отсека проходных изоляторов с ОПН или кабельным, через пол или стены. Низковольтные выводы могут быть кабельными или воздушными, с установокой на крыше КТП-1000 рамы с изоляторами для ВЛ-0,4 кВ.

Основание КТП-1000 представляет цельносварную конструкцию из профилей, которая имеет сплошной или просечной настил с маслоприемным отверстием для аварийного сброса масла из трансформатора и отверстиями для ввода и вывода кабелей. Прочность основания трансформаторного модуля рассчитана на установку одного силового трансформатора мощностью до 2500 кВА.

РУВН на КТП мощностью свыше 250 кВА может выполняться, на базе камер серии KCO-3хх-КН, а свыше 1000 кВА могут быть выполнены на базе КСО-2хх-КН с вакуумными выключателями.

РУНН, комплектуются панелями ЩО-70-КН как с автоматическими выключателями на вводе и отходящих линиях, так и с рубильниками и предохранителями.

В РУНН может быть предусмотрена возможность установки:

  • учета электроэнергии;
  • автоматического или местного управления уличным освещением;
  • автоматических выключателей для собственных нужд (освещения, отопления и вентиляции).

Присоединение КТП-1000 к воздушной линии ВЛ-6(10) кВ, как правило, осуществляется через трехполюсный линейный разъединитель типа РЛНД-10 или аналогичный ему.

В качестве силовых трансформаторов применяются трансформаторы как с сухой так и с масляной основной изоляцией обмоток.

Перед отправкой все модули собираются, прокладываются все межмодульные связи, производится маркировка и комплексное тестирование электрооборудования. По заказу в КТП-1000 может выполняется: электроосвещение; электроотопление; естественная или принудительная вентиляция; сплит-система кондиционирования и пожарная сигнализация.

Общий алгоритм подбора кабеля в сети 0,4 кВ

Давайте посмотрим, самый общий алгоритм подбора кабеля в сети 0,4 кВ. Подбор сечения кабеля в электросети 0,4кВ проводится по потере напряжения по следующему алгоритму.

  • Сложить всю нагрузку сети;
  • Умножить полученную нагрузку на коэффициент использования, К=0,7;
  • По полученному значению (Ux) вычислить ток нагрузки, по формуле:

I=P/Ux Cos(фи)

где cos(фи) принимаем равным 0,9. По этому току можно выбрать номинал вводного автомата и значение тока расцепителя в трансформаторной подстанции;

Теперь рассчитываем кабель

  • По току нагрузки, но не менее тока нагрузки расцепителя в подстанции, по таблицам ПУЭ подбираем сечение кабеля;
  • Если планируется вести несколько кабелей, ток нагрузки умножаем на поправочные коэффициенты. Используем другие поправочные коэффициенты, если нужно;

Делаем расчет на потери напряжения по длине. Формула простая:

dU=(PxL)÷(KxS)

, где

  • P – активная мощность;
  • L – длина кабеля;
  • K – коэффициент, равный для однофазной сети алюминиевого кабеля =46, для медного кабеля = 77, для техфазной сети = 12,8 (алюминий) и = 7,7 (медь).
  • S – сечение кабеля по жилам.

По ПУЭ:

  • Для силовых сетей, потеря напряжения не должна превышать 5%;
  • Для освещения промпредприятий и общественных зданий не более 2,5%,
  • Для сетей освещения жилых домов и освещения улиц 5%.

Если потеря мощности по длине не укладывается в эти рамки, меняется сечение или марка кабеля.

Теперь подробнее.

Оптимальная длина кабельной линии 0,4 кВ

Совсем недавно я рассказывал про размещение трансформаторной подстанции, а сегодня хочу вам показать зависимость сечения кабельной линии от расстояния до источника питания. Введем такое понятие как оптимальная длина кабельной линии.

Есть ли вообще такое понятие? Если нет, то давайте дадим ему определение

Оптимальная длина кабельной линии – это максимальная длина кабельной линии для конкретного сечения, при которой не требуется завышать сечение кабеля из-за больших потерь напряжения и низких токов короткого замыкания.

Оптимальная длина кабеля – это еще экономически целесообразная длина КЛ.

Как будем рассчитывать оптимальную длину кабеля? Рассмотрим сечения четырехжильных кабелей от 16 до 240 мм2. Для каждого кабеля определим максимальный ток в зависимости от длительно допустимого тока кабеля и автоматического выключателя. Максимальные потери напряжения примем 5%, хотя я стараюсь по возможности проектировать таким образом, чтобы потери в наружных сетях не превышали 4%, это актуально для объектов, которые имеют длинные распределительные и групповые сети.

При помощи своих программ я подобрал оптимальную длину кабелей для разных сечений алюминиевых кабелей. Коэффициент мощности принял 0,85. Результаты расчетов представлены в таблице:

Сечение F, мм2 Iдл.д.к., А АВ-In, А Iр=0,9In, А Lопт., м ~Iкз, кА ΔU, %
16 62 50 45 125 0,4 4,98
25 82 63 57 155 0,5 5,03
35 101 80 72 170 0,6 5,05
50 126 100 90 190 0,8 5,02
70 155 125 113 210 1,0 5,05
95 190 160 144 215 1,3 4,99
120 219 200 180 215 1,6 5,06
150 254 200 180 260 1,6 5,03
185 291 250 225 250 2,0 5,05
240 343 315 284 245 2,5 5,04

С учетом всех расчетов можно сделать вывод, что оптимальная длина кабелей 0,4 кВ– 200 м. Однако, я бы разделил все кабели на две группы:

  • сечения 16-50мм2;
  • сечения 70-240 мм2.

Для группы 16-50мм2 – средняя оптимальная длина будет 160 м, а для группы 70-240 мм2 – 230м.

Следует иметь ввиду, что токи к.з. указаны условно, т.к. зависят от мощности питающих трансформаторов. Я ориентировался на трансформатор 630 кВА.

Зачем знать оптимальную длину кабеля?

В большинстве случаев мы не можем повлиять на длину кабельной линии, однако, расчетная таблица позволит выполнить предварительный выбор сечения кабелей.

В одном из комментариев написали, что рекомендуют размещать трансформаторную подстанцию на расстоянии не более 300 м от потребителя. В действительности это расстояние немного даже завышено.

Или вы не согласны со мной?

Советую почитать:

Расчет освещения точечным методом

Создание микроклимата в щите

Освещение в коридоре

Расчет тока утечки в разветвленной цепи

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм2·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

R = ρ · L/S.

Потеря напряжения по длине проводника должна быть не более 5%:

dU = 0,05 · 220 В = 11 В.

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм2. Отсюда диаметр одной жилы должен быть не менее (√S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Источник: ledsshop.ru

Стиль жизни - Здоровье!