Ток отсечки полевого транзистора это

Схемы включения полевых транзисторов

 Сфера применения полевых транзисторов та же, что и у биполярных. В основном они применяются в качестве усилительных элементов. Биполярные триоды при применении в усилительных каскадах имеют три основные схемы включения:

  • с общим коллектором (эмиттерный повторитель);
  • с общей базой;
  • с общим эмиттером.

Полевые транзисторы включаются подобными способами.

Схема с общим стоком

Схема с общим стоком (истоковый повторитель), так же, как и эмиттерный повторитель на биполярном триоде, усиления по напряжению не дает, но предполагает усиление по току.

Достоинством схемы является высокое входное сопротивление, оно же в некоторых случаях является недостатком – каскад становится чувствительным к электромагнитным помехам. При необходимости Rвх можно уменьшить включением резистора R3.

Схема с общим затвором

Эта схема подобна схеме включения биполярного транзистора с общей базой. Эта схема дает хорошее усиление по напряжению, но усиление по току отсутствует. Как и включение с общей базой, такой вариант применяется нечасто.

Схема с общим истоком

Наиболее распространена схема включения полевых триодов с общим истоком. Её коэффициент усиления зависит от соотношения сопротивления Rс к сопротивлению в цепи стока (для регулировки усиления в цепи стока может быть установлен дополнительный резистор), а также зависит от крутизны характеристики транзистора.

Также полевые транзисторы используются в качестве управляемого сопротивления. Для этого рабочая точка выбирается в пределах линейного участка. По этому принципу можно реализовать управляемый делитель напряжения. А на двухзатворном триоде в таком режиме можно реализовать, например, смеситель для приёмной аппаратуры – на один затвор подается принимаемый сигнал, а на другой – сигнал с гетеродина.

Если принять теорию о том, что история развивается по спирали, можно увидеть закономерность в развитии электроники. Уйдя от ламп, управляемых напряжением, технологии пришли к биполярным транзисторам, которым для управления нужен ток. Спираль сделала полный виток – сейчас наблюдается доминирование униполярных триодов, не требующих, как и лампы, расхода мощности в цепях управления. Куда дальше выведет циклическая кривая – будет видно. Пока альтернативы полевым транзисторам не наблюдается.

Как работает транзистор и где используется?

Что такое биполярный транзистор и какие схемы включения существуют

Что такое оптрон, как работает, основные характеристики и где применяется

Назначение, характеристики и аналоги транзистора 13001

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

IGBT-транзистор

IGBT – гибридный полупроводниковый прибор. В нем совмещены два способа управления электрическим током, один из которых характерен для полевых транзисторов (управление электрическим полем), а второй – для биполярных (управление инжекцией носителей электричества).

Обычно в IGBT используется структура МДП-транзистора с индуцированным каналом n-типа. Структура этого транзистора отличается от структуры ДМДП-транзистора дополнительным слоем полупроводника р-типа.

Обратим внимание на то, что для обозначения электродов IGBT принято использовать термины «эмиттер», «коллектор» и «затвор». Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p)

Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p

Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p). Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p.

УГО и схема выключения IGBT показаны на рисунке:

Типичный вид выходных характеристик показаны на рисунке:

Составные транзисторы

Для увеличения значения h21 соединяют биполярные транзисторы по схеме Дарлингтона:

В составном транзисторе, имеющем характеристики, как одного, база VT1 соединена с эмиттером VT2 и ΔIэ2 = ΔIб1. Коллекторы обоих транзисторов соединены и этот вывод является выводом составного транзистора. База VT2 играет роль базы составного транзистора ΔIб = ΔIб2, а эмиттер VT1 – роль эмиттера составного транзистора ΔIэ = ΔI1.

Получим выражение для коэффициента усиления по току β для схемы Дарлингтона. Выразим связь между изменением тока базы dIб и вызванным вследствие этого изменением тока коллектора dIк составного транзистора следующим образом:

Поскольку для биполярных транзисторов коэффициент усиления по току обычно составляет несколько десятков (β1, β2 >> 1), то суммарный коэффициент усиления составного транзистора будет определяться произведением коэффициентов усиления каждого из транзисторов βΣ = β1 · β2 и может быть достаточно большим по величине.

Отметим особенности режима работы таких транзисторов. Поскольку эмиттерный ток VT2 Iэ2 является базовым током VT1 dIб1, то, следовательно, транзистор VT2 должен работать в микромощном режиме, а транзистор VT1 – в режиме большой инжекции, их эмиттерные токи отличаются на 1-2 порядка. При таком неоптимальном выборе рабочих характеристик биполярных транзисторов VT1 и VT2 не удается в каждом из них достичь высоких значений усиления по току. Тем не менее даже при значениях коэффициентов усиления β1, β2 ≈ 30 суммарный коэффициент усиления βΣ составит βΣ ≈ 1000.

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статистическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ, наоборот, и граничная частота усиления по току, и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1, VT2 в отдельности.

Задачи на транзисторы с решением

Задачи на транзисторы никак не получиться решать без знания теории. Сначала рекомендуем ознакомиться с ней, а уже потом приступать к практике.

Задача №1 на полевой транзистор

Условие

У полевого транзистора с управляющим р-n переходом максимальный ток стока равен 1мА, а напряжение отсечки – 4В. Какой ток будет протекать при обратном напряжении смещения затвор-исток, равном 2В? Чему равна крутизна и максимальная крутизна в этом случае?

Решение

Ток стока можно найти из выражения:

Выражение для крутизны характеристики полевого транзистора:

Максимальная крутизна:

Ответ: 0,25А; 0,25 мА/В; 0,5 мА/В.

Задача №2 на усилитель на транзисторах

Условие

В усилительном каскаде с общим истоком сопротивление нагрузки равно 20 кОм. Эффективное входное сопротивление полевого транзистора составляет 20 кОм, а рабочая крутизна – 2 мА/В. Определите коэффициент усиления каскада.

Решение

Вычислим сначала результирующее сопротивление нагрузки:

Коэффициент усиления каскада:

Ответ: 20.

Задача №3 на усилитель на транзисторе

Условие

В усилителе, показанном на схеме, при напряжении затвор-исток, равном 2В, ток стока равен 1 мА. Определите сопротивление резистора Rи, если падением напряжение IзRз можно пренебречь. Найдите напряжение Ec, если Rи=10 кОм, Uси=4 В.

Решение

Сопротивление Rи можно найти по закону Ома:

Напряжение источника питания равно:

Ответ: 2 кОм; 16 В.

Задача №4 на полевой транзистор

Условие

Полевой транзистор с управляющим p-n переходом имеет следующие характеристики при температуре 25оС: начальный ток стока IСн = 10 мА, напряжение отсечки U0 = -2 В. Оценить, на сколько процентов изменится (увеличится или уменьшится) ток стока в пологой области выходной ВАХ, если между затвором и истоком поддерживать напряжение Uзи = -0,5 В, а температуру поднять до 85 градусов Цельсия.

Решение

Изменение начального тока стока ПТ с управляющим р-n переходом может быть оценено по приближенной формуле:

Smax следует подставлять в мА/В, а Iсн – в мА, чтобы результат получился в мА. В относительных величинах:

С ростом температуры напряжение отсечки всегда возрастает по модулю, а начальный ток стока убывает при Uо > 0,6 В и возрастает при Uо < 0,6 В.

Так как в рассматриваемом случае напряжение отсечки более 0,6, то начальный ток стока должен уменьшаться при росте температуры.

Максимальная крутизна при заданном напряжении затвор-исток:

Таким образом, уменьшение тока стока составит:

Ответ: ток уменьшиться на 31%.

Задача №5 на полевой транзистор

Условие

Полевой транзистор с управляющим p-n-переходом, имеющим ICmax = 2 мА и Smax=2 мА/В, включен в усилительный каскад по схеме с общим истоком. Сопротивление резистора нагрузки Rн=10 кОм. Определить коэффициент усиления по напряжению, если UЗИ = — 1 В.

Решение

Найдем напряжение отсечки:

Определим крутизну транзистора при напряжении затвор-исток, равном -1В:

Коэффициент усиления по напряжению равен:

Ответ: 10

Устройство полевого транзистора с управляющим p-n переходом (JFET).

Каждый из озвученных типов транзисторов делится еще на две подгруппы:

  • с N-каналом
  • с P-каналом

Мы сосредоточимся на первом варианте, суть процессов полностью идентична, различна лишь полярность подключаемых источников напряжений.

Итак, устройство JFET-транзистора с N-каналом:

Подложку зачастую соединяют с истоком еще на этапе производства транзистора, поэтому на схемах обычно присутствуют только три вывода.

Отметим сразу эти три электрода полевого транзистора: сток, исток и затвор. Собственно, наблюдаем две области P-типа, а между ними в наличии область N-типа, к концам которой подключены два оставшихся электрода – сток и исток. И вся эта область N-типа как раз и образует N-канал.

Вспоминаем об основных характеристиках областей разного типа в целом:

  • В области P-типа основными носителями заряда являются дырки, концентрация же электронов мала. Электроны здесь – неосновные носители.
  • Полностью противоположна ситуация в областях N-типа. В этом случае электроны как раз-таки являются основными носителями заряда, а концентрация дырок мала.

В непосредственной близости от стока и истока на схеме помечены отдельные области «N+». Это все та же область N-типа, но сильно легированная. Что означает еще более высокую концентрацию электронов в ней.

Из схемы также можно сделать вывод о том, что для полевого транзистора с управляющим p-n переходом исток и сток по своей сути идентичны, то есть в схему его можно включить двумя способами, меняя, соответственно, исток и сток местами. Таким образом, для данного класса элементов обозначения стока и истока, по большому счету, условны.

Разобравшись со структурой и устройством, переходим к самому интересному – к протекающим внутри процессам. Из чего уже будет понятно, как все это работает.

Для чего нужен полевой транзистор

При рассмотрении работы сложных видов электротехники, стоит рассмотреть работу такого важного компонента интегральной схемы, как полевой транзистор. Основная задача от использования данного элемента заключается в пяти ключевых направлениях, в связи с чем транзистор применяется для:

  1. Усиления высокой частоты.
  2. Усиления низкой частоты.
  3. Модуляции.
  4. Усиления постоянного тока.
  5. Ключевых устройств (выключателей).

В качестве простого примера работа транзистора-выключателя, может быть представлена как микрофон и лампочка в одной компановке.  Благодаря микрофону улавливаются звуковые колебания, что влияет на появление электрического тока, поступающего на участок запертого устройства. Присутствие тока влияет на включение устройства и включение электрической цепи, к которой подключаются лампочки. Последние загораются после того как микрофон уловил звук, но горят они за счет источников питания не связанных с микрофоном и более мощных.

Модуляцию применяют с целью управления информационными сигналами. Сигналы управляют частотами колебаний. Модуляцию применяют для качественных звуковых радиосигналов, для передачи звуковых частот в телевизионные передачи, для трансляции цветовых изображений и телевизионных сигналов с высоким качеством. Модуляцию применяют повсеместно, где нужно проводить работу с высококачественными материалами.

Как усилители полевые транзисторы в упрощенном виде работают по такому принципу: графически любые сигналы, в частности, звукового ряда, могут быть представлены как ломаная линия, где ее длиной является временной промежуток, а высотой изломов – звуковая частотность. Чтобы усилить звук к радиодетали подается поток мощного напряжения, приобретаемого нужную частотность, но с более большим значением, из-за подачи слабых сигналов на управляющие контакты. Иначе говоря, благодаря устройству происходит пропорциональная перерисовка изначальной линии, но с более высоким пиковым значением.

Представление транзистора в малосигнальном режиме работы четырехполюсником

В малосигнальном режиме работы транзистор может быть представлен четырехполюсником. Когда напряжения u1, u2 и токи i1, i2 изменяются по синусоидальному закону, связь между напряжениями и токами устанавливается при помощи Z, Y, h параметров.

Потенциалы 1′, 2′, 3 одинаковы. Транзистор удобно описывать, используя h-параметры.

Электрическое состояние транзистора, включенного по схеме с общим эмиттером, характеризуется четырьмя величинами: Iб, Uбэ, Iк и Uкэ. Две из этих величин можно считать независимыми, а две другие могут быть выражены через них. Из практических соображений в качестве независимых удобно выбирать величины Iб и Uкэ. Тогда Uбэ = f1(Iб, Uкэ) и Iк = f2(Iб, Uкэ).

В усилительных устройствах входными сигналами являются приращения входных напряжений и токов. В пределах линейной части характеристик для приращений Uбэ и Iк справедливы равенства:

Физический смысл параметров:

  • – входное сопротивление при коротком замыкании полюсов 2-2′;
  • – коэффициент передачи по напряжению в режиме хх со стороны полюсов 1-1′;
  • – коэффициент передачи по току при коротком замыкании полюсов 2-2′
  • – выходная проводимость при холостом ходе на входе, полюсы 1-1′ разомкнуты.

Для схемы с ОЭ коэффициенты записываются с индексом Э: h11э, h12э, h21э, h22э.

В паспортных данных указывают h21э = β , h21б = α. Эти параметры характеризуют качество транзистора. Для увеличения значения h21 нужно либо уменьшить ширину базы W, либо увеличить диффузионную длину, что достаточно трудно.

Структура полевого транзистора

Основополагающий принцип работы, на котором осуществляется действие полевого транзистора с использованием управляющего p-n-перехода основывается на изменении проводимости канала, которая возможна благодаря изменению поперечного сечения. Сток и исток включают напряжение полярности, при котором главные носители заряда (ими являются электроны в канале n-типа) движутся от истока к стоку. В свою очередь, между затвором и истоком включается отрицательное напряжение, управляющее запиранием p – n–переходом.

Рис. №2. Структуры (а) полевых транзисторов с управляющим p—n-перехода и (б) структура транзистора с изолированным затвором.

При большем значении напряжения расширяется запирающий активный слой и канал становится уже. С уменьшением поперечного размера канала происходит увеличение сопротивления и уменьшение величины тока между стоком и истоком. Это действие позволяет управлять протеканием тока. При невысоком значении напряжения затвор  — исток происходит перекрытие канала запирающим слоем, что снижает проводимость канала. Ширина канала варьируется от нулевого значения  до отрицательных величин, иначе говоря, p-n-переходы затвора сдвигаются в обратном направлении, сопротивление увеличивается.

Напряжение на затворе после исчезновения канала и смыкании  p-n-перехода, определяется, как напряжение отсечки U– это величина считается одной из основополагающих для всех  разновидностей полевых транзисторов.

Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.

Сфера использования полевых транзисторов

Полевой транзистор является устройством, рассчитанным на большую мощность, характерным в конструкции регуляторов, конвертеров, драйверов, электродвигателей, реле и мощных биполярных транзисторов. Они применяются в конструкции зарядных устройств, автоэлектроники, устройствах управления температурным режимом, широкополосных и малошумящих усилителях в схемах зарядочувствительных предусилителей и прочее.  Для полевых транзисторов характерно наличие высокого входного сопротивления. Управление полевым транзистором производится непосредственно от микросхемы, без применения добавочных усиливающих каскадов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Транзистор полевой

При добавлении бора акцептор легированный кремний станет полупроводником с дырочной проводимостью p-Si , то есть в его структуре будут преобладать положительно заряженные ионы. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током.

На рисунке приведен полевой транзистор с каналом p-типа и затвором выполненным из областей n-типа. Опишем подробнее каждую модификацию.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале.

Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам. Устройство полевого транзистора с управляющим p-n переходом Приведено на рис.

См. также: Подключить электричество к участку

Другие популярные статьи

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора. Транзистор имеет три вывода: исток, сток, затвор. Vgs — управляющее напряжение, Vg-Vs.

Этот принцип используют для усиления сигналов. На конкретной схеме это p-канальный прибор затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала p-слой , а область p-n-перехода в большей степени расположена в p-области по этой причине.

Похожие публикации

Типы полевых транзисторов и их схематическое обозначение. В результате возникают некомпенсированные заряды: в области n-типа — из отрицательных ионов, а в области p-типа из положительных. Схема с общим истоком Истоком называют электрод, через который в канал поступают носители основного заряда. С общим стоком в. МДП — транзисторы выполняют двух типов — со встроенным каналом и с индуцированным каналом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок в зависимости от типа проводимости основного кристалла. И даже наоборот, его наличие специально используется в некоторых схематических решениях. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной.
Схемы включения полевых транзисторов

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Схема полевого транзистора.

Слева изображен n-канальный полевой транзистор и его электроды, а справа, соответственно, его биполярный n-p-n «аналог». Казалось бы, устройства практически полностью идентичны друг другу — в чем же разница? Переходим к детальному анализу.

Само название ПТ нам говорит о том, что его работой управляет электрическое поле, которое создается приложенным к затвору напряжением (как вы помните, в БТ выходной ток управлялся током базы). В случае же полевого транзистора через затвор и вовсе не течет никакой ток, и в этом то, пожалуй, и заключается главная особенность этого устройства. Давайте разберемся чуть подробнее. Ток затвора отсутствует, следовательно, полное входное сопротивление транзистора невероятно велико (действительно, R = frac{U}{I}, а I, то есть ток, у нас стремится к нулю). И это свойство полевика имеет огромное значение.

Из всего этого следует, что полевой транзистор нельзя рассматривать как устройство, усиливающее ток, поскольку на входе тока, как мы выяснили, нет совсем. Давайте рассмотрим, как же он работает.

Итак, напоминаю, что мы остановили свой выбор на рассмотрении n-канального полевого транзистора. Когда это устройство работает в нормальном режиме сток имеет положительный потенциал относительно истока (для p-канального, естественно, все наоборот). Ток же от стока и истоку не будет протекать до тех пор, пока к затвору не будет приложено положительное относительно истока напряжение. То есть как только мы подаем на затвор напряжение, превышающее потенциал истока, от стока к истоку начинает протекать ток. Меняя напряжение U_{зи}(напряжение затвор-исток) мы можем управлять величиной этого тока.

Давайте для лучшего понимания посмотрим на выходные характеристики (зависимость тока стока от напряжения сток-исток):

Видим, что при напряжениях сток-исток выше 1-2 В, ток стока остается практически неизменным. Эта область характеристик ПТ называется областью насыщения. С большой точностью полевой транзистор позволяет получить неизменный ток стока при постоянном значении напряжения затвор-исток. Как видим из графика — чем больше значение U_{зи}, тем больше становится величина тока стока. Кроме того, можно сказать, что ток стока прямо пропорционален квадрату разности напряжений (U_{зи}-U_{п}). Здесь U_{п} — это пороговое напряжение. Что это такое? А это такое напряжение затвора, при котором начинает протекать ток стока. Для данного графика пороговое значение напряжение затвор-исток составляет примерно 1.6 В.

Практический пример.

Итак, на принципиальных схемах полевой транзистор с управляющим p-n переходом бывает представлен следующим образом:

Для теста возьму первый попавшийся, а именно J112, вот даташит на него, в котором можно найти всю необходимую информацию. Например, зависимость, обсуждению которой мы посвятили столько времени:

Обозначения англоязычные, но, естественно, это погоды не делает.

Кроме того, первым делом при выборе транзистора будет не лишним выяснить предельно допустимые значения напряжений и токов, чтобы не превысить их и не вывести элемент из строя.

Я буду моделировать схему в Proteus, поностальгирую заодно по старым временам, когда активно его использовал. Но речь не об этом, а о том, что значения скорее всего не будут прямо в точности совпадать с приведенными в документации – это нормально. Тем не менее полученные при симуляции величины должны быть близки к аналогичным из даташита.

Схема будет такая, как в первой части статьи:

То есть — полевой транзистор, амперметр, источник питания, тогда:

  • U_{ЗИ} = 0 medspace В
  • U_{СИ} же поставим 0.4 В

Из документации видим, что ток должен быть около 6 мА, получаем на практике:

I_{СИ}= 5.07 medspace мА, нормально, все ожидаемо и подтверждает рассмотренные теоретические аспекты.

Теперь реализуем схему из второй части статьи, добавив источник напряжения между затвором и истоком. Пусть будет так:

  • U_{ЗИ} = -0.6 medspace В
  • U_{СИ} = 0.4 medspace В

На основе физических процессов в JFET-транзисторе ожидаем увидеть меньшее значение тока, так как при таком же напряжении сток-исток U_{ЗИ} стал меньше относительно первого эксперимента:

Именно это и получили:

Уменьшим еще U_{ЗИ} до -0.8 В:

Опять все логично, и добавить нечего к этому.

Есть такое ощущение, что уже при U_{СИ} = 0.4 medspace В транзистор в данном случае находится в режиме насыщения. Попробуем увеличить U_{СИ} до 1.4 В:

Так и есть, ток не изменился. Значит попробуем уменьшить, почему нет. U_{ЗИ} остается -0.8 В, U_{СИ} выставляем равным 0.1 В:

Ток ожидаемо уменьшился. Если вернуться к теоретическому графику, то осознаем, что при U_{СИ} = 0.1 medspace В мы находимся в линейной области, а при U_{СИ} = 0.4 medspace В уже в области насыщения:

На этом я и заканчиваю сегодняшний пост, прошлись по теории, подтвердили на практике, чего еще желать… До скорого

Сравнение IGBT с MOSFET

Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Преимущества и недостатки полевого транзистора JFET

Высокое входное сопротивление

Одно из важнейших свойств полевых транзисторов, как уже упоминалось выше, это очень высокое входное сопротивление Rвх (Rin).
Причем у полевых транзисторов с изолированным затвором MOSFET, Rin в среднем еще на несколько порядков выше, чем у JFET.
Благодаря этому, полевые транзисторы практически не потребляют ток у источников сигнала, который надо усилить.

Например, цифровая схема микроконтроллера генерирует сигнал, управляющий работой электромотора.
Такого рода схема обычно располагает очень малым током на выходе, что явно недостаточно для двигателя.
Здесь потребуется усилитель, потребляющий крайне мало тока на входе,
и выдающий на выходе сигнал такой же формы и частоты как на выходе у микроконтроллера,
только уже с большим выходным током. Здесь как раз и подойдет усилитель,
основанный на JFET транзисторе с высоким входным сопротивлением.

Низкий коэффициент усиления по напряжению

Значительным недостатком JFET по сравнению с биполярным транзистором является очень низкий коэффициент усиления по напряжению.
Если построить усилитель на основе одного прибора JFET, можно добиться Vout/Vin в лучшем случае около 20.
При аналогичном использовании биполярного транзистора с высокой β
(коэффициент усиления биполярного транзистора – ток коллектора/ток базы)
можно достигнуть Vout/Vin в несколько сотен.

Поэтому для качественных усилителей нередко используются совместно оба типа транзисторов.
Например, благодаря очень высокому Rin полевого транзистора, добиваются большого усиления сигнала по току.
А уже потом, с помощью биполярного транзистора усиливают сигнал по напряжению.

Как применять полевой транзистор для чайников

Первыми приборами, которые поступили на рынок для реализации, и в которых были использованы полевые транзисторы с управляющими p-n переходами, были слуховые аппараты. Их изобретение состоялось еще в пятидесятые годы XX века. В более крупным масштабах они применялись, как элементы для телефонных станций.

В наше время, применение подобных устройств можно увидеть во многих видах электротехники. При наличии маленьких размеров и большому перечню характеристик, полевые транзисторы встречаются в кухонных приборах (тостерах, чайниках, микроволновках), в устройстве компьютерной, аудио и видео техники и прочих электроприборах. Они используются для сигнализационных систем охраны пожарной безопасности.

На промышленных предприятиях транзисторное оборудование применяют для регуляции мощности на станках. В сфере транспорта их устанавливают в поезда и локомотивы, в системы впрыскивания топлива на личных авто. В жилищно-коммунальной сфере транзисторы позволяют следить за диспетчеризацией и системами управления уличного освещения.

Также самая востребованная область, в которой применяются транзисторы – изготовление комплектующих, используемых в процессорах. Устройство каждого процессора предусматривает множественные миниатюрные радиодетали, которые при повышении частоты более чем на 1,5 ГГц, нуждаются в усиленном потреблении энергии. В связи с этими разработчики процессорной техники решил создавать многоядерные оборудования, а не увеличивать тактовую частоту.

Источник: ledsshop.ru

Стиль жизни - Здоровье!