Сунержа полотенцесушители с защитой от блуждающих токов

Электрохимическая коррозия: как защитить полотенцесушитель?

Каждый хозяин знает, что ремонт в доме и квартире непрерывен. Не всем и не сразу удается учесть все детали и нюансы, да и в процессе ремонта каждый старается как можно быстрее, при этом долговечнее и качественнее все сделать. При это критерий «недорого» также частый путник того, кто начал ремонтные работы. Однако тому, кто уже столкнулся с его последствиями, известно, что дешево и долговечно – понятия антонимы. Потому лучше сразу отдать предпочтение лучшим материалам. Это относится ко всему, включая и полотенцесушитель.

Почему важно правильно использовать полотенцесушитель

Всем известно, что полотенцесушитель отвечает за поддержание комфортного температурного режима, а также за качественное высушивание белья. Значимость этого прибора замечают лишь в те моменты, когда она начинает выходить из строя. К сожалению, такие ситуации не редкость. При этом полотенцесушители могут легко подвергать электрокоррозии и протеканию.

Почему важно правильно использовать полотенцесушитель

Чем опасны протечки и электрокоррозия?

Сперва наперво эти недуги опасны для ваших соседей. Имеется ввиду, что они могут усугубить перепады давления, что может привести к срыву прибора. Думаем, не нужно пояснять в какую копеечку выльется вам эта поломка.

Как защитить полотенцесушитель от всех поломок?

Существуют универсальные метода того, как защитить полотенцесушитель от электрокоррозии и поломок. Сперва вам необходимо выбрать полотенцесушитель, который изготовлен из материалов высокого качества, при этом надежных и долговечных.

Наиболее популярным среди таких материалов является нержавеющая стальмарка AISI 304. Любое изделие с ее использованием прослужит своему хозяину не одно десятилетие. Однако существует нюанс – не обойдется без блуждающих токов, которые запускают процесс электрохимической коррозии и провоцируют образование точек коррозии, увеличивающиеся с ходом времени. При этом они являются причиной образования злосчастных подтеканий.

Как защитить полотенцесушитель от всех поломок

Почему образуются блуждающие токи?

Электрический ток образуется в водной среде за счет ее трения о металлические стенки труб либо же по причине заземления соседом неверно работающего электроприбора, к примеру, стиральной машины старого производства.

Данные факторы позволяют распространиться токам по трубам и перейти в воду, что и приводит внутренней ржавчине полотенцесушителя.

Повышенная жесткость воды также причина неблагоприятной среды для образования токов по причине соприкосновения металлов с различными потенциалами. Кроме того, даже пути трамваев, которые проходят недалеко от труб, могут являться причиной образования тока в воде.

Как исправить это явление?

Производители знают, как частично можно разрешить эту проблему. Выход в заземлении. Но оно так же должно быть грамотно выполнено: заземляется вставка из металла, которая расположена перед полотенцесушителем, но не в коем случае не заземляет корпус.

Как защитить полотенцесушитель от коррозии?

Купить полотенцесушитель рекомендуется тот, который качественно выполнен из материалов, относящихся к высококачественным. Вы также можете подобрать тот дизайн, что будет по душе исключительно вам.

Не рекомендуется в целях экономии устанавливать полотенцесушитель самостоятельным образом – высок риск того, что вы навредите себе и домочадцам. Лучше доверьте монтаж специалистам и в обязательном порядке требуйте от них гарантию работы.

Блуждающие топи в быту (в квартире)

При рассмотрении вопроса нельзя исключать появление блуждающих токов в жилых объектах. Они могут появиться в полотенцесушителях, водопроводных трубах, отопительной системе, газовой колонке и даже бойлере. Рассмотрим основные варианты.

Блуждающие токи в полотенцесушителе

При правильном строительстве появление блуждающих токов исключено. Это связано с тем, что все конструкции по стояку являются металлическим и заземляются в подвальном помещении.

Проблема появилась с постепенной заменой металлических труб на пластиковые. В таком случае цепочка разрывается и появляются блуждающие токи.

Получается, что действующий потенциал делится, и между стояком и полотенцесушителем может появиться напряжение.

Существуют и другие причины появления блуждающих токов в таких конструкциях:

  • близкое применение двух видов стали: нержавейки и черной;
  • плохая изоляция проводки;
  • обрыв сети;
  • выполнение заземления на систему отопления и т. д.

Лучшее решение проблемы — заземление полотенцесушителя. Если изделие сделано из нержавеющей стали, алгоритм действий такой:

  1. Подготовьте провод сечением 2,5 кв. мм.
  2. Объедините все металлические части ванной с помощью провода.
  3. Сделайте перемычку, а именно соедините проводник и провод на распредщитке.
  4. Зафиксируйте заземление на полотенцесушитель с помощью хомута из металла.

Защита полотенцесушителя от блуждающих токов

Блуждающие токи в системе отопления

В любом доме или квартире имеется системы отопления и водопроводная.

Сами по себе они не могут быть источниками блуждающих токов и безопасны. Но со временем в трубах и стенах появляется статическая электроэнергия и, как результат, появляется разность потенциалов.

Это ведет к появлению входящих и исходящих блуждающих токов, негативно влияющих на металл.

Кроме того, к причинам возникновения блуждающих токов в трубах стоит отнести:

  • повреждение изоляции в стиральной машинке;
  • проблемы скрытой / открытой проводки;
  • нарушение целостности ТЭНов;
  • попадание крепежных элементов в электропроводку;
  • нахождение рядом ЛЭП и т. д.

Для защиты от блуждающих токов пройдите такие шаги:

  1. Замените трубы из металла пластиковыми (в системе отопления).
  2. Если первый вариант не подходит, используйте пластиковые вставки.
  3. Выполните заземление.
  4. Установите катодную защиту (может монтироваться в многоэтажных домах).
  5. Проверьте электропроводку, чтобы избежать утечек.

В бойлере

Водонагреватель имеет повышенные риски для здоровья человека, ведь он изготовлен из металла и постоянно контактирует с водой.

Влага является хорошим проводником электричества, поэтому в случае пробоя оборудование может стать источником опасности для жизни.

Нельзя исключать и появление блуждающих токов, возникающих в электрооборудовании большой мощности.

Единственный способ защиты — заземление бойлера. Наиболее простой способ состоит в соединении корпуса с каким-либо металлическим элементом, к примеру, трубопроводом. Но такой способ рискован и применять его нельзя.

Правильный способ, следующий:

  1. Сделайте розетку с заземляющим контактом. Она должна быть установлена на высоте от пола более 80 см, от нагревателя — 50 см.
  2. Используйте 3-жильный кабель, в котором одна жила имеет желто-зеленую изоляцию. Именно ее и нужно заземлить. Провод от розетки должен быть доведен до щитка и подведен к заземлению.
  3. При прокладке кабеля сделайте штробу или используйте наружный способ прокладки.
  4. Отключите общий выключатель и выполните подсоединение.

Использовать бойлер без заземления нельзя. Это правило обязательно и указывается в инструкции по эксплуатации такой техники.

В газовой колонке

Еще одним местом возникновения блуждающих токов может быть газовая колонка. Причиной такого явления может быть наличие рядом ЛЭП или электрического транспорта, а также неправильное заземление.

Для устранения проблемы рекомендуется использовать в месте соединения шланга к газовой трубе изолирующий переходник-вставку (диэлектрическая муфта).

Ее монтаж является обязательным условием по СП 402.1325800.2018. Может также потребоваться поиск места неправильного заземления для устранения проблемы.

Заземление как защита от электрокоррозии

Чтобы предотвратить возникновение в системе блуждающих токов и защитить полотенцесушитель от электрохимической коррозии, нужно воссоздать устойчивую связь между ним и трубой стояка. Другими словами, нужно просто заземлить периферическое устройство, соединив полотенцесушитель проводом с металлическим стояком, или же смонтировать систему уравнивания потенциалов.

Это важно сделать еще и потому, что некоторые недобросовестные жильцы многоквартирных домов, желая сэкономить, ставят на свои электросчетчики жучки, а в качестве заземления используют трубопроводы систем отопления или водоснабжения. И тогда их соседям грозит реальная опасность, ведь даже простое прикосновение к металлической батарее даст человеку «шанс» получить смертельный удар током

Atlantic (Атлантик)

Компания постоянно разрабатывает и внедряет новые технологии. Так, благодаря особой конструкции каждая модель бренда способна обеспечить максимально эффективное и экономичное энергопотребление (см. таблицу).

За счет масштабных объемов производства компания Atlantic может устанавливать на свою продукцию цены на уровне ниже среднерыночных. Таким образом, премиальные модели из линейки французского бренда стоят в несколько раз дешевле всех российских и европейских аналогов.

Основные характеристики популярных моделей от «Атлантик» МодельТипМощностьРазмер (ВхШхГ)Примерная цена
Adelis Линейка Adelis выделяется высокими (7 см) перекладинами — против 2 см у обычных «лесенок». За счет этого получаются самые эффективные и энергоэкономичные модели. Обычный полотенцесушитель контактирует примерно с 50% поверхности полотенца, тогда как Adelis — с 80-90%. Сушка происходит в 1,5-2 раза быстрее в сравнении с трубчатыми аналогами, а значит и затраты на электроэнергию почти в 2 раза ниже.
ANT 500W электрический полотенцесушитель 500 Вт 998х556х115 мм 23990 руб.
ANT 750W электрический полотенцесушитель 700 Вт 1388х556х115 мм 27890 руб.
W 500W электрический полотенцесушитель 500 Вт 998х556х115 мм 21290 руб.
W 750W электрический полотенцесушитель 750 Вт 1388х556х115 мм 25890 руб.
Atlantic 2012 Atlantic 2012 Серия трубчатых моделей Atlantic. Особо выделим узкие полотенцесушители серии NW. Их ширина составляет всего 400 мм, что позволяет моделям занимать мало места в санузле. При этом варианты с высотой 1240 мм способны одновременно сушить 3-4 полотенца против 1-2 в моделях на 600-700 мм.
CH 500W электрический полотенцесушитель 500 Вт 1453х500х63 мм 20690 руб.
NW 300W электрический полотенцесушитель 300 Вт 798х400х100 мм 11490 руб.
NW 500W электрический полотенцесушитель 500 Вт 1240х400х85 мм 14440 руб.
NA 300W электрический полотенцесушитель 300 Вт 798х400х100 мм 15690 руб.
NA 500W электрический полотенцесушитель 500 Вт 1453х500х63 мм 20690 руб.

P.S.

Это одни из самых востребованных производителей в России. Каждый год появляются новые игроки, но далеко не все они могут соперничать в цене и качеству с этими гигантами. Даже несмотря на кажущуюся простоту устройства электрического полотенцесушителя, его изготовление требует применения дорогостоящих технологий и оборудования. Поэтому смотрите на торговую марку – от этого будет зависеть долговечность приобретаемой продукции!

Причины и признаки электрохимической коррозии

Появление вихревых токов Фуко – довольно сложное непредсказуемое явление. В системах горячего водоснабжения, а порой и в системе отопления такие токи появляются из-за многих причин, казалось бы не связанных между собой.

ЧИТАТЬ ДАЛЕЕ: Отключили свет: возможные причины, что делать, куда звонить

Вообще, вихревые токи образуются при разности потенциалов. При строительстве дома, все металлические конструкции подключаются к общему контуру заземления, причем раньше в строительстве использовали заземление по контуру, а сейчас довольствуются методом уравнивания потенциалов.

Когда в квартире вместо существующей металлической системы ставят пластиковые – разность потенциалов возникает из-за разрыва заземления (например, на полотенцесушителе один потенциал, а на стояке – совсем другой). Отсюда и разность потенциалов, отсюда и блуждающие токи. Еще они могут возникать в результате короткого замыкания, отсутствия заземления близнаходящихся электрических бытовых приборов, будь то стиральная машина и так далее.

Даже наличие/отсутствие трамвайных путей в непосредственной близости играет роль. Блуждающие токи возникают также при нарушении изоляции электропроводки, обрыва сети, заземления, сделанного на систему отопления.

Все это ведет к электрокоррозии сантехники, к ней еще приводит соседство двух разных материалов, особенно нержавеющей и черной стали. То место, через которое в полотенцесушитель проходит заряд, в результате подвергается электрохимической реакции, поэтому там образуется повреждение. Такие проблемы обычно решаются непосредственно заземлением самого полотенцесушителя.

Электрохимическая коррозия отличается от химической тем, что процесс разрушения проходит в системе электролитов, отчего внутри этой системы возникает электрический ток. Два сопряжённых процесса, анодный и катодный, приводят к удалению из кристаллической решетки металла неустойчивых атомов. Ионы при анодном переходят в раствор, а электроны от анодного процесса попадают в ловушку к веществу-окислителю и связываются деполяризатором.

Таким образом, деполяризация – это отвод с катодных участков свободных электронов, а деполяризатор – вещество, которое отвечает за этот процесс. Основные реакции происходят с участием водорода и кислорода в роли деполяризаторов.

Существует множество примеров электрохимической коррозии разного типа, которая оказывает воздействие на металлические поверхности в природе и проходит под влиянием различных условий. Водород при этом работает в кислой среде, а кислород – в нейтральной.

Практически все металлы подвергаются электрохимической коррозии, и по этому признаку их разбивают на 4 группы, определяют величину их электродного потенциала:

  • активные коррозируют даже в той среде, где нет окислителей;
  • среднеактивные вступают в реакцию окисления в кислотной среде;
  • малоактивные не вступают в реакцию при отсутствии окислителей и в нейтральных, и в кислых средах;
  • не вступают в реакцию – высокой стабильности (благородные металлы, палладий, золото, платина, иридий).

Есть даже электрическая коррозия, которая протекает под воздействием электрического тока, и является результатом работы блуждающих токов, возникающих там, где электрический ток используется человеком для осуществления определенной деятельности.

Гомогенная металлическая поверхность при этом разрушается из-за термодинамической неустойчивости к окружающей среде. А гетерогенная – из-за состава кристаллической решётки, в которой атомы одного металла держатся плотнее, чем атомы инородных вкраплений. Эти реакции отличаются скоростью протекания ионизации ионов, и восстановления окислительных компонентов окружающей среды.

Разрушение металлических поверхностей при электрохимической коррозии состоит в одновременном протекании двух процессов: анодного и катодного, и отличия процессов состоят в том, что растворение происходит на анодах, которые и контактируют с окружающей средой через множество микроэлектродов, которые входят в состав поверхности любого металла и замкнуты на себя.

Необходимость антикоррозионной защиты

Защита металла от воздействий, которые разрушающе действуют на его поверхность – одна из основных задач, возникающих перед теми людьми, которые работают с механизмами, агрегатами и машинами, морскими судами и строительными процессами.

ЧИТАТЬ ДАЛЕЕ: Установка и подключение полотенцесушителя в ванной своими руками

Чем активнее эксплуатируется устройство или деталь, тем больше шансов у нее подвергнуться разрушительному воздействию и атмосферных условий, жидкостей, с которыми приходится сталкиваться в процессе работы. Над защитой металла от коррозии работают многие отрасли науки и промышленного производства, но основные способы остаются при этом неизменными, и состоят в создании защитных покрытий:

  • металлических;
  • неметаллических;
  • химических.

Химия внесла свой вклад в создание защитных покрытий методами:

  • оксидирования (создания защитной пленки на металле с помощью оксидных пленок);
  • фосфатирования (фосфатных пленок);
  • азотирования (насыщения поверхности стали азотом);
  • цементации (соединения с углеродом);
  • воронения (соединения с органическими веществами);
  • изменения состава металла путем введения в него антикоррозийных добавок);
  • модификации окружающей коррозийной среды путем введения ингибиторов, влияющих на нее.

Электрохимическая защита от коррозии – это процесс, обратный электрохимической коррозии. В зависимости от смещения потенциала металла в положительную или отрицательную стороны, различают анодную и катодную защиту. Путем подсоединения к металлическому изделию протектора или источника постоянного тока на металлической поверхности создается катодная поляризация, которая и препятствует разрушению металла через анод.

Электрохимические методы защиты состоят в двух вариантах:

  • металлическое покрытие защищено другим металлом, у которого более отрицательный потенциал (то есть, защищающий металл менее устойчив, чем защищаемый), и это называется анодное покрытие;
  • покрытие нанесено из менее активного металла, и тогда он является и называется катодным.

Анодная защита от коррозии – это, например, оцинкованное железо. Пока не израсходуется весь цинк с защитного слоя, железо будет в относительной безопасности.

Защита катодным способом – это никелирование или нанесение меди. В этом случае разрушение защитного слоя приводит и к разрушению того слоя, который он защищает. Присоединение протектора для предохранения металлического изделия ничем не отличается от протекания реакции в других случаях. Протектор выступает в роли анода, а то, что находится под его протекторатом, остается в сохранности, используя созданные ему условия.

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

  1. Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

    Пассивная защита

  2. Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

    Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Виды и появления блуждающих токов

Одна из причин связана с массовым применением рельсового электротранспорта. Электрифицированные ЖД магистрали, трамваи и метро, рудничная локомотивная контактная откатка становятся причиной появления блуждающих токов и наносят ущерб газовым трубопроводам, водопроводным линиям, бронированным кабельным сетям, металлоконструкциям.

Общая схема происходящего в этом случае следующая:

  1. Рельсовый путь используется в качестве проводника, по которому ток возвращается к обратному фидеру тяговой подстанции.
  2. На участках, которые плохо изолированы от земной поверхности, происходит утечка части энергии в грунт. Так как потенциал в этой точке максимален, появляется блуждающий ток, который движется в зону с небольшим потенциалом. А таким участком и становится труба или кабель в оплётке, любая металлическая конструкция, расположенная в земле.
  3. Пройдя по металлу, как по пути наименьшего сопротивления, в зону, где потенциал существенно уменьшается, ток выходит в грунт и возвращается в рельсовый путь.

В результате таких процессов в анодных зонах, участки выхода токов из рельсов и трубопровода, возникает процесс электрохимической коррозии. При этом скорость разрушения металлов может достигать десятка миллиметров в год. Для рельсового пути такие повреждения несущественны из-за большой толщины стали, хотя также снижают срок службы конструкции.

А вот для труб с небольшой стенкой такие повреждения становятся критичными. Выглядят они как сквозные отверстия небольшого диаметра. Если трубопровод находится в зоне длительного воздействия блуждающих токов без надлежащей защиты, может возникнуть ситуация, когда его поверхность напоминает решето.

Среди двух других потенциальных источников возникновения блуждающих токов выделяют:

  1. Трансформаторные подстанции, распределительные устройства с заземляющим оборудованием, линии ЛЭП с глухозаземлённой нейтралью. В случае постоянных небольших утечек на землю, уровень которых не достигает предела срабатывания защитных устройств, в зоне вокруг этих сооружений также возникают паразитные блуждающие токи.
  2. Электрокабельные сети подземного заложения также становятся причиной подобного эффекта при снижении диэлектрических свойств изоляции или её пробое.

Объяснение схемы выше: нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Понятно, что в большинстве случаев разрушающее воздействие в таких условиях будет меньше, чем в зонах расположения рельсовых путей электротранспорта, но оно также оказывает своё влияние.

Причина появления тока в домашнем быту

Существует ещё один вид блуждающего тока, который правда не связан с процессами, происходящими в земле. Речь идёт о появлении аналогичных повреждений на стальных полотенцесушителях, радиаторов отопления, установленных в обычных зданиях. Основной причиной становится разница потенциалов на этих устройствах и заземлённых участках водопровода или системы отопления.

Раньше все эти сети монтировались из металлических труб и обязательно заземлялись. Поэтому в пределах одного здания разницы потенциалов на отдельных участках или элементах системы не существовало или она была настолько минимальной, что не приносила никакого вреда.

Сейчас ситуация кардинально изменилась, и причиной этого стало массовое применение полипропиленовых и металлопластиковых труб. Полимерные материалы обладают высоким удельным сопротивлением, поэтому их можно считать хорошими диэлектриками. В результате получают изолированные друг от друга участки сети. При этом вода остаётся хорошим проводником, она отлично переносит скапливающийся статический заряд.

Поэтому и происходит появление эффекта блуждающих токов, вызванного разницей потенциалов на заземлённом участке сети и отдельных полотенцесушителях или батареях. В этом случае электрохимическая коррозия быстро разрушает тонкостенные металлические устройства.

Итоги

Блуждающие токи — это не миф или выдумка физиков, а реальная проблема, с которой необходимо бороться. Если ничего не предпринимать, повышается вероятность коррозии металлов, находящихся в зоне действия потенциала.

В зоне риска не только подземные металлические конструкции, находящиеся в зоне ЛЭП, электрофицированных железных дорог, метрополитена и трамваев, но и элементы быта: водонагреватель, полотенцесушитель, водопроводная / отопительная система и даже газовая колонка.

Вот почему нужно знать, как измерить и защититься от такого явления.

Блуждающие токи. 12.08.2021.

Литература: 1 Привезенцев, В.А. Силовые кабели и высоковольтные кабельные линии / В.А. Привезенцев, Э.Т. Ларина. – М.: РАГС, 1995. – 120 с. 2 Фридкин, И.А. Эксплуатация кабельных линий 1–35 кВ / И.А. Фридкин. – М.: Энергия, 1972. – 88 с.

Источник: ledsshop.ru

Стиль жизни - Здоровье!