Сила тока при трехфазном соединении

Подключение двигателя прямого пуска, выбор всех компонентов

Практически в каждом объекте присутствуют двигатели, которые необходимо подключить. Основную массу электродвигательного оборудования составляют вентиляторы и насосы

Я думаю вы обратили внимание, что у меня в шапке блога показано как раз такое подключение. В этой заметке мы произведем подключение электрического двигателя

1 Рассчитываем потребляемый ток двигателя.

Потребляемый ток зависит от мощности, напряжения, коэффициента мощности и коэффициента полезного действия. В некоторых каталогах, например насосы Wilo, кроме мощности в характеристиках можно найти и потребляемый ток.

Для расчета тока двигателя можно воспользоваться моей программкой. Там все очень просто. Подставляем данные и получаем расчетный ток двигателя. Скачать мою программу для расчета тока двигателя можно по .

2 Определяем каким образом у нас будет включаться двигатель.

Как правило, для управления двигателем используют электромагнитный пускатель. Электромагнитный пускатель позволяет управлять двигателем при необходимости с двух и более мест. Например, общая вентсистема на два этажа.

Для этого можно поставить пост кнопочного управления (с кнопками ПУСК и СТОП) на каждом этаже, а пускатель разместить в силовом щите. Еще пускатель защищает двигатель от перегрузки.

Дополнительные контакты электромагнитного пускателя позволяют сигнализировать о включении или отключении двигателя. Как выбрать электромагнитный пускатель, я посвящу отдельный пост.

Если не требуется предусматривать дистанционное управление и двигатель малой мощности (вентиляторы до 0,3кВт), то можно по месту поставить обычный выключатель освещения или выключатель кнопочный (ВКИ, ПРК).

3 Выбираем кабель от двигателя до пускового аппарата (пускателя, контактора). 

Если двигатель однофазный, то кабель будет трехжильный (1Р+N+PE), если трехфазный — четырехжильный(3Р+PE). До 16мм2 кабель может быть медным, от 16 мм2- алюминиевый. По согласованию с заказчиком кабели от 16мм2 можно также взять медными. Основное условие: допустимый длительный тока кабеля должен быть больше потребляемого тока двигателя.

4 Выбираем кабель от защитного аппарата до пускового аппарата (пускателя, контактора).

В случае с однофазным двигателем — трехжильный (1Р+N+PE). При трехфазном двигателе возможно 2 варианта, все зависит от напряжения катушки пускателя. Я применяю пускатели с катушками на 230В, поэтому кабель — пятижильный(3Р+N+PE). Если вы выбрали пускатель с катушкой на 400В, то кабель в вашем случае будет четырехжильный(3Р+PE).

5 Выбираем защитный аппарат.

Совет

Здесь для нас важны две характеристики: ток теплового расцепителя и характеристика электромагнитного расцепителя. От перегрузки двигатель наш будет защищать тепловое реле электромагнитного пускателя. Основное назначение автоматического выключателя – защита кабеля от перегрузки и короткого замыкания. Не стоит завышать уставку автоматического выключателя!

Уставка теплового расцепителя автоматического выключателя выбирается примерно на 10-20% выше, чем потребляемый ток двигателя. Приведу пример, пусть ток двигателя 40А. Подходит кабель 6мм2, но автомат должен быть на 50А. Как видим автомат не защитит наш кабель, поэтому сечение кабеля будет увеличено до 10мм2.

Характеристика электромагнитного расцепителя зависит от пускового тока двигателя. При не правильном  выборе автомат будет срабатывать при пуске двигателя.

В случае, как у меня на картинке сверху, расчетный ток 10,8А, пусковой ток равен 10,8*7,5=81А. Автоматический выключатель выбран мною 16D, т.к. 16С может сработать при пуске двигателя (81/16=5,1).

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Электрический счетчик

При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.

Важно соблюдать порядок подключения, где нечетные номера — это питание, а четные — нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора

Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод — ноль.

3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.

Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.

Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.

Как измерить мощность в цепи трехфазного переменного тока

Мощность в цепи трехфазного тока может быть измерена с помощью одного, двух и трех ваттметров. Метод одного прибора применяют в трехфазной симметричной системе. Активная мощность всей системы равна утроенной мощности потребления по одной из фаз.

При соединении нагрузки звездой с доступной нулевой точкой или если при соединении нагрузки треугольником имеется возможность включить обмотку ваттметра последовательно с нагрузкой, можно использовать схемы включения, показанные на рис. 1.

Рис. 1 Схемы измерения мощности трехфазного переменного тока при соединении нагрузок а — по схеме звезды с доступной нулевой точкой; б — по схеме треугольника с помощью одного ваттметра

Если нагрузка соединена звездой с недоступной нулевой точкой или треугольником, то можно применить схему с искусственной нулевой точкой (рис. 2). В этом случае сопротивления должны быть равны Rвт+ Rа = Rb =Rc.

Рис 2. Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой

Для измерения реактивной мощности токовые концы ваттметра включают в рассечку любой фазы, а концы обмотки напряжения — на две другие фазы (рис. 3). Полнаяреактивная мощность определяется умножением показания ваттметра на корень из трех. (Даже при незначительной асимметрии фаз применение данного метода дает значительную погрешность).

Рис. 3. Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром

Методом двух приборов можно пользоваться при симметричной и несимметричной нагрузке фаз. Три равноценных варианта включения ваттметров для измерения активной мощности показаны на рис. 4. Активная мощность определяется как сумма показаний ваттметров.

При измерении реактивной мощности можно применять схему рис. 5, а с искусственной нулевой точкой. Для создания нулевой точки необходимо выполнить условие равенства сопротивлений обмоток напряжений ваттметров и резистора R. Реактивная мощность вычисляется по формуле

где Р1 и Р2 — показания ваттметров.

По этой же формуле можно вычислить реактивную мощность при равномерной загрузке фаз и соединении ваттметров по схеме рис. 4. Достоинство этого способа в том, что по одной и той же схеме можно определить активную и реактивную мощности. При равномерной загрузке фаз реактивная мощность может быть измерена по схеме рис. 5, б.

Метод трех приборов применяется при любой нагрузке фаз. Активная мощность может быть замерена по схеме рис. 6. Мощность всей цепи определяется суммированием показаний всех ваттметров.

Рис. 4. Схемы измерения активной мощности трехфазного переменного тока двумя ваттметрами а — токовые обмотки включены в фазы А и С; б — в фазы А и В; в — в фазы В и С

Реактивная мощность для трех- и четырехпроводной сети измеряется по схеме рис. 7 и вычисляется по формуле

где РA, РB, РC — показания ваттметров, включенных в фазы А, В, С.

Рис. 5. Схемы измерения реактивной мощности трехфазного переменного тока двумя ваттметрами

Рис. 6. Схемы измерения активной мощности трехфазного переменного тока тремя ваттметрами а — при наличии нулевого провода; б — с искусственной нулевой точкой

На практике обычно применяют одно-, двух- и трехэлементные трехфазные ваттметры соответственно методу измерения.

Чтобы расширить предел измерения, можно применить все указанные схемы при подключении ваттметров через измерительные трансформаторы тока и напряжения. На рис. 8 в качестве примера показана схема измерения мощности по методу двух приборов при включении их через измерительные трансформаторы тока и напряжения.

Рис. 7. Схемы измерения реактивной мощности тремя ваттметрами

Рис. 8. Схемы включения ваттметров через измерительные трансформаторы.

Расчёт величины тока по мощности и напряжению

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300    
0,75 0,98 10 2200    
1,00 1,13 14 3100    
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250    
0,75 0,98 10 3800    
1,00 1,13 14 5300    
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Это интересно: Санузел в деревянном доме – сделать туалет своими руками с канализацией — что важно знать

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Что важно знать

Данная диаграмма условно иллюстрирует трехфазную сеть:

Напряжение между фазами 380 вольт обозначено синим цветом. Зеленым цветом обозначено равномерное распределенное линейное напряжение. Красным — перекос напряжений.

Новым, трехфазным абонентам электросети в частном доме или квартире, при первом подключении, не стоит сильно надеяться на изначально равномерно распределенную нагрузку на вводной линии. Поскольку от одной линии могут быть запитаны несколько потребителей, а у них с распределением могут возникать проблемы.

Первым делом нужно выяснить напряжение между фазами, а также между L1-L3 и нулем, измерив их измерительным прибором. Если вы начали обзор нашего портала с этой статьи, рекомендуем также ознакомиться с инструкцией по использованию мультиметра.

Если после измерений вы увидели, что есть отклонения от номинальных напряжений (более 10%, согласно ГОСТ 29322-92), необходимо обратиться в электроснабжающую организацию для принятия соответствующих мероприятий по восстановлению симметрии фаз. Более подробно о том, что такое перекос фаз в сети, можете узнать из нашей статьи.

Согласно договору между абонентом и РЭС (о пользовании электроэнергией), последние должны поставлять качественную электроэнергию в дома, с указанным фазным и линейным напряжением. Частота также должна соответствовать 50 Герц.

Учет электроэнергии

Электросчетчик — это специальный прибор учета электроэнергии переменного тока. Такие счетчики есть в каждом доме, и учитывают они не киловатты или амперы, а киловатт-часы. Итак, киловатт-час — внесистемная единица измерения, которая демонстрирует, какую мощность в киловаттах потребляет электроприбор за 1 час работы. Именно за киловатт-часы, которые регистрирует счетчик, мы платим производителю электроэнергии. Мы можем самостоятельно прикинуть средний дневной расход электроэнергии, чтобы спланировать свои траты на коммунальные услуги.

Метод

Вычисление киловатт-часов по мощности прибора

  1. На этикетке прибора найдите его мощность. Большинство электроприборов на задней или нижней панели имеют ярлык с энергопараметрами. На таком ярлыке найдите значение потребляемой мощности, которое обозначается как «W» или «Вт». Как правило, на этикетке указывается максимальное значение потребляемой прибором мощности, которое значительно превышает среднее значение потребляемой мощности. В этом разделе описывается процесс вычисления приблизительного значения киловатт-часов, которое больше реального значения потребляемой электроэнергии.

    На некоторых устройствах приводится диапазон потребляемой мощности, например, «200-300 Вт». В этом случае для расчетов выберите среднее значение; в нашем примере таким значением является 250 Вт.

  2. Умножьте потребляемую мощность на количество часов, в течение которых вы пользуетесь прибором каждый день. Ватты – это единица измерения мощности безотносительно времени. Умножив единицу измерения мощности на единицу измерения времени вы сможете оценить количество потребляемой электроэнергии и вычислить сумму, которую вы должны заплатить.

    • Например, большой оконный вентилятор мощностью 250 Вт работает 5 часов в день. Таким образом, ежедневно вентилятор потребляет (250 Вт) х (5 ч) = 1250 Вт∙ч электроэнергии.
    • В случае кондиционеров и обогревателей делайте отдельные расчеты для каждого сезона.
    • Холодильник потребляет электроэнергию только около 8 часов в день (если вы никогда не отключаете его).
  3. Полученный результат разделите на 1000. Так как 1 кВт = 1000 Вт, этот шаг преобразует единицы измерения из Вт∙ч в кВт∙ч.

    В нашем примере вы вычислили, что вентилятор ежедневно потребляет 1250 Вт∙ч. (1250 Вт∙ч) ÷ (1000 Вт) = 1,25 кВт∙ч в день.

  4. Умножьте полученный результат на определенное количество дней. На данный момент вы вычислили количество электроэнергии (в кВт•ч), потребляемое прибором каждый день. Для определения ежемесячной или ежегодной величины потребляемой электроэнергии умножьте ежедневное значение на количество дней в месяце или в году.

    • В нашем примере за месяц (30 дней) вентилятор израсходует (1,25 кВт∙ч в день) х (30 дней) = 37,5 кВт∙ч электроэнергии.
    • В нашем примере за год (365 дней) вентилятор израсходует (1,25 кВт∙ч в день) х (365 дней) = 456,25 кВт∙ч электроэнергии.
  5. Полученное значение умножьте на стоимость одного киловатт-часа. На бланке оплаты за электроэнергию указана стоимость одного киловатт-часа. Умножьте эту стоимость на вычисленное количество потребляемой электроэнергии, чтобы определить сумму, которую вы должны заплатить.

    • Например, если 1 кВт∙ч стоит 5 рублей, то за электроэнергию, потребляемую вентилятором, вам придется заплатить (5 рублей за кВт∙ч) х (456,25 кВт∙ч в год) = 2281,25 рублей (в год).
    • Помните, что вычисления на основе этикеточного значения мощности прибора дают максимальное значение стоимости потребляемой электроэнергии – на самом деле вы заплатите меньше.
    • Если вы работаете с разными регионами (областями) страны, найдите стоимость 1 кВт∙ч электроэнергии в каждом регионе. Жителям России рекомендуем открыть этот сайт.

Источник: ledsshop.ru

Стиль жизни - Здоровье!