Рассчитать показания ваттметра включенного в цепь постоянного тока если заданы следующие параметры

Как пользоваться

Сегодня наибольшей популярностью, особенно для бытовых нужд, пользуются ваттметры цифровые. Они функциональней аналоговых приборов и более просты в эксплуатации, так как на экран выводятся готовые результаты показаний ваттметра, которые вы настраиваете для работы. Работу выполняйте так:

  • Произведите подключение ваттметра в розетку.
  • Убедитесь, что на дисплее показан ноль и экран очистился от последних показаний.
  • Подключите бытовой прибор, характеристики которого вы хотите замерить, к ваттметру.
  • Всего через несколько минут на экране высветятся показания.
  • Если вам больше не нужна полученная информация, то нажмите кнопку сброс и уничтожьте ее.

Показатель мощности в ваттметре аналогового типа показывается на дуговой шкале, градуированной в зависимости от модели. Движущая стрелка остановится напротив показателя мощности, соответствующего определенному участку цепи.

Но перед тем как начать использовать ваттметр необходимо ознакомиться с правилами безопасности, это даст возможность избежать поражения электротоком. Так как приборы работают с напряжением в 220В, то угроза для здоровья может быть смертельной. Перед работой:

  • Проверьте ваттметр на повреждения на корпусе или штепсельной вилке, не используйте его, если они имеют место.
  • Не вскрывайте корпус самостоятельно, доверьте работу специалистам, это даст возможность сохранить его в целостности и не оплачивать более дорогостоящий ремонт.
  • Не используйте устройство на открытом воздухе или во влажных помещениях, это опасно.
  • Не допускайте попадания воды, если измерение ведется рядом, например, с умывальником, то не приближайтесь на расстояние менее одного метра.

Как видим, здесь все просто и вам не придется специально обучаться и переживать за безопасность, если вы будете придерживаться определенных правил. Теперь давайте разберемся, как расшифровать полученные данные.

Виды исполнения измерителей

Ваттметры делятся на мобильные (носимые), стационарные (щитовые), лабораторные и бытовые. Все представленные разновидности могут быть выполнены в аналоговом и цифровом классе устройств.

Мобильные

Сюда относятся тестеры небольшого размера, для единовременной разовой проверки каналов нагрузки. Питание подобные аппараты, часто получают от самой исследуемой линии. Есть варианты, оснащенные аккумуляторами, или батареями. Зависимые от сети — часто аналогового, автономные — цифрового класса.

Стационарные

Подключение ваттметра стационарного вида обычно выполняется в щитах питания зданий, домов, квартир, или в иных точках центрального распределения энергии. Отдельными постоянными измерительными устройствами выступают лабораторные аппараты. Первые предназначены целям постоянного контроля расхода линии, вторые для единовременной, но высокоточной пробы электрического потребления отдельных нагрузок.

Ваттметр стационарного типа бывает аналогового и цифрового класса. Плюсом первого выступает непревзойденная надежность, второго — удобство и функциональность. Частым случаем, монтируемых в щиток и учитывающих потребление аппаратов можно назвать классические счетчики расхода электроэнергии. К сожалению, они не определяют «моментальные» значения, но дают представление об общих затратах на нагрузку линии в киловатт часах.

Бытовые

Аппараты подобного вида не очень точны, и предназначены обычно для измерения расхода одного, реже двух бытовых устройств. Классическое исполнение — переходник с индикатором, размещаемый между гнездом 220 В и вилкой потребителя. Подобный ваттметр, вставляемый в розетку, может, в зависимости от модели, показывать и «мгновенный» общий расход, или разделять его на активный, реактивный, комплексный и общие киловатт-часы.

Разновидности и обозначения

По частоте тока, мощность которого измеряется, ваттметры подразделяются на следующие группы:

  • низкочастотные и постоянного тока;
  • радиочастотные (потребляемой и поглощаемой мощности);
  • оптические.

Низкочастотные

Низкочастотные ваттметры применяются в сетях переменного тока и электроустановках постоянного. Так, переменные ваттметры подразделяются на однофазные и трёхфазные. Для определения реактивной мощности в сети используются так называемые варметры. Если вам попался цифровой ваттметр – он считает активную и реактивную мощность. Маркируются такие ваттметры буквой Ц, рядом с которой ставится номер, определяющий класс точности прибора, пределы измеряемой мощности и модель, например, Ц301, Д8002, Д5071.

Радиочастотные по поглощению

Для поглощаемой мощности на радиочастотах используется внушительная подгруппа ваттметров. По видам они разделяются благодаря наличию нескольких типов и разновидностей датчиков, с которых и считываются показания. Для радиочастоты в качестве датчика подойдут термопара, термистор и пиковый обнаружитель, гальваномагнитные и пондеромоторные комплектующие. Однако радиочастотное излучение зачастую отражается, такой ваттметр измеряет поглощённую, а не реально попадающую на датчик мощность.

Ваттметры с термистором включают в себя принимающий конвертер на основе термистора или болометра. К нему подключён измерительный мост. Для разогревания термистора применяется источник обычного переменного тока. Термистор меняет своё сопротивление при нагреве. Температура разогреваемого термистора определяется уровнем мощности сигнала, попадающего на него.

В процессе измерения рассеиваемая на термисторе мощность радиоизлучения – вместе с мощностью переменного тока – не приводит к значимому изменению сопротивления термистора. Оно стабильно за счёт работы измеряющего моста, реагирующего на изменение подогревающего термистор тока. Вся эта цепь раньше работала за счёт ручных регулировок – сейчас же задачу подстройки взял на себя цифровой модуль, автоматически вмешивающийся в вышеперечисленные параметры. Термисторные ваттметры работают с рассеиваемой на приборе мощностью до нескольких милливатт. Этот предел превышаем за счёт делителей входной мощности, вызывающих при этом ещё большую недостоверность проводимых измерений, пример – М3-22А, M3-28.

У калориметрических ваттметров вместо термистора применяют особый нагрузочный элемент, с которого тепло отдаётся на преобразователь, собранный на термисторе. В качестве посредника выступает рабочее тело – очищенная вода либо жидкость, способная её заменить. Эта жидкость протекает с постоянной скоростью, проходя через входной нагрузочный элемент, конвертер и уносящий излишнее тепло элемент, пример – приборы М313, МК3-68/70.

У термоэлектрических ваттметров используется термопара – одна или несколько – с непосредственным и опосредованным нагреванием. В процессе измерения мощности разогретый стык термопары разогревается ещё больше от мощности сигнала, с которого прибор снимает показания. Схема вырабатывает температурное электрическое напряжение. Это напряжение и является сигналом, идущим на АЦП цифрового ваттметра или на гальванометр аналогового, например, термоэлектрическими являются ваттметры М3-51/56/93.

«Пиковые» ваттметры чувствительны к мощности импульсного сигнала, но замер мощности такого сигнала неточен. Такой прибор легко сделать из переменного вольтметра, подключив к нему нагрузочное устройство с сопротивлением, совпадающим с волновым сопротивлением фидера.

Радиочастотные по прохождению

Первоначальным конвертером (преобразователем) в таких приборах является направленный разветвитель – узел, отбирающий из основного канала небольшую часть мощности. Она поступает на вторичный конвертер – например, через детектор огибающей сигнала или термоэлемент. Полученный сигнал передаётся к АЦП или гальванометру. Для частот 150–1620 кГц применение разветвителей осложнено. Вместо них применяют датчики по току и напряжению. Такими деталями выступают трансформаторы по напряжению и току.

Полученные значения умножаются друг на друга по фазной разнице. Пример использования такого устройства – определение мощности, отправляемой передатчиком в антенный кабель. В СВЧ-диапазоне – 300–3000 МГц применяют термисторные, гальваномагнитные и термоэлектрические датчики в стенке волновода. Пример такого прибора – М2-23/32 или NAS.

Ваттметр цифровой на сетевое напряжение

В гостях у нас китайский ваттметр, приобретенный на распродаже в Алиэкспрессе.

Ну что же, давайте познакомимся с ним поближе.

Первая строка на ваттметре – это часы. Они начинают счет только тогда, когда в розетку ваттметра включена какая-либо нагрузка. Нагрузкой в нашем случае может быть любой электробытовой прибор: утюг, паяльник, светильник и так далее

Строкой ниже, с помощью кнопки “Energy”, мы можем выводить параметры электрического сигнала, такие как:

– напряжение (V, Вольт)

– сила тока (A, Ампер)

– частота (Hz, Герц)

– мощность (W, Ватт)

– коэффициент мощности (Power Factor) или cos φ (косинус фи,безразмерная величина, то есть измеряется чисто в цифрах)

Третья строка – это расчет стоимости электроэнергии. Измеряется в Киловаттах умноженных на Час (КВатт х час). Самая частая ошибка – это когда пишут кВатт/час. Запомните, там знак не деления, а умножения! Вот за эти киловатт-часы мы и платим денежку провайдерам электрической энергии ;-).

Сейчас никакая нагрузка не включена в розетку ваттметра. Смотрим на дисплей:

Ничего себе, почти 240 вольт.

Можно замерить частоту. 50 Герц – так и должно быть.

Так как в розетке нашего ваттметра нет никакой нагрузки, следовательно и сила тока также будет равняться нулю:

Ну и мощность также будет равняться нулю

Функции

Производители освоили выпуск разных по функционалу моделей, это могут быть простые устройства с измерением мощности, но также сегодня рынок предлагает многофункциональные модели с расширенными характеристиками ваттметра, которые используются для выполнения различных задач.

Кроме измерения мощности ваттметром и определения расхода электроэнергии вы можете приобрести модель:

  • Для измерения тока, напряжения, частоты, сопротивления ваттметра и других параметров.
  • С одним или несколькими режимами работы.
  • С практически любыми пределами измерения ваттметра.
  • С управлением по интернету, что позволяет отключить, например, подключенный к электросети прибор, находясь на расстоянии.
  • Разного класса точности ― от устройств с обычной погрешностью ваттметра до высокоточных приборов.
  • С замерами не только мощности, но и количества углекислого газа в помещении.
  • С функцией «умной розетки» для настройки работы потребителей.

Мы перечислили только небольшой перечень, чтобы вы понимали возможности некоторых моделей ваттметров.

Кроме этого, есть дополнительные функции, которые делают работу прибора более комфортной, к ним относят: подсветку дисплея, что очень удобно при работе в темноте, возможность хранения настраиваемых параметров, функцию изменения калибровочных коэффициентов и т.д.

Понятие о мощности и методы расчёта

В бытовой сети течёт переменный ток 220 В (в промышленной – 380), но большинство электроприборов потребляет постоянный. Для этого к каждому такому устройству прилагается блок питания (он может быть встроен в корпус потребителя).

Мощность – физическая величина, измеряемая в Ваттах (Вт) или Киловаттах (кВт). Для каждого электроприбора параметр вычисляется с помощью двух формул.

Для переменного тока

Такие потребители как обычные электрические лампочки, инструмент с мотором (дрель, болгарка, станки для заточки), работают от переменного тока. Чтобы узнать потребляемую ими мощность, нужно произведение напряжения и силы тока умножить ещё и на коэффициент cos φ. Это связано с тем, что электрические компоненты (катушки или обмотки мотора) влияют на значение силы тока, изменяя его в разные моменты времени. Поэтому без приборов измерить мощность не получится.

Для постоянного тока

Расчёт производится по формуле: следует умножить силу тока (в Амперах, А) на напряжение (Вольт, В). Пример: устройство потребляет 0,1 А и рассчитано на 15 В. Тогда потребляемая мощность будет равна 0,1х15=1,5 Вт. Узнать информацию о силе тока и напряжении можно на корпусе блока питания, самом устройстве или в технической документации, которую всегда предоставляет завод-изготовитель.

Расчет сложных цепей переменного тока. Линейные электрические цепи синусоидального тока/

Содержание работы

Кафедра электротехники и электрических машин

Расчетно-графическое задание

Тема: «Расчет сложных цепей переменного тока»

Выполнил: студент I курса 7145 гр. ИЭАСХ

заведующий кафедрой, доцент

Задача 1.2 Линейные электрические цепи синусоидального тока

Дана электрическая схема (рис. 1), выполнить следующее:

1) определить токи во всех ветвях цепи и напряжения на отдельных участках цепи. Найти комплексы действующих значений токов во всех ветвях и их мгновенные значения;

2) составить баланс мощностей (активной, реактивной, полной);

3) построить в масштабе на комплексной плоскости топографическую диаграмму напряжений для замкнутых контуров, совмещенную с векторной диаграммой токов;

4) определить показания вольтметра и ваттметра;

5) построить графики мгновенных значений тока и напряжения, подведенных к ваттметру.

Е = 230 В; C1 = 317 мкФ; L2 = 12,5 мГн; r1 = 7 Ом;

f = 50 Гц; C3 = 115 мкФ; r3 = 16 Ом;

Наиболее распространенным методом расчета таких цепей является метод эквивалентных преобразований. Этот метод заключается в последовательной, начиная с конца схемы, замене сопротивлений всех элементов электрической цепи одним эквивалентным с последующим использованием закона Ома.

Определим сопротивления реактивных элементов цепи:

; , где ω = 2πf = 2∙3,14∙50 = 314 с -1 – угловая частота.

Расчет выполняем в комплексной форме с последующим переходом к аналитическим выражениям токов в следующей последовательности:

1. Задаемся положительным направлением токов в ветвях цепи;

2. Записываем электрические сопротивления ветвей цепи в комплексной форме:

Измерение мощности сети ваттметром

Для измерения мощности постоянного тока достаточно измерить напряжение вольтметром и ток амперметром (метод амперметра и вольтметра). Чаще всего измерение мощности осуществляется одним прибором – ваттметром.

Для измерения мощности постоянного тока достаточно измерить напряжение вольтметром и ток амперметром. Результат определяется по формуле

P = U·I.

Метод амперметра и вольтметра пригоден и для измерения полной мощности S = U·I, а также активной мощности переменного тока, если cosφ = 1

P = U·I·cosφ = UV·IA.

Чаще всего измерение мощности осуществляется одним прибором – ваттметром. Для измерения мощности лучшей является электродинамическая система.

Эта система представляет собой две катушки (рисунок 1), одна из которых неподвижная, а другая – подвижная. Обе катушки подключаются к сети, и взаимодействие их магнитных полей приводит к повороту подвижной катушки относительно неподвижной.

Рисунок 1 – Электродинамическая система измерения мощности

Из уравнения α = k’·I1·I2 видно, что шкала электродинамической системы имеет квадратичный характер. Для устранения этого недостатка подбирают геометрические размеры катушек таким образом, чтобы подучить шкалу, близкую к равномерной.

Ваттметр снабжен двумя измерительными элементами в виде двух катушек: последовательной и параллельной. По первой катушке течет ток, пропорциональный нагрузке, а по второй – пропорциональный напряжению в сети.

Угол поворота подвижной части электродинамического ваттметра пропорционален произведению тока и напряжения в измерительных катушках:

α = k·U·I = k·P.

На рисунке 2 показана схема включения ваттметра в однофазную сеть.

Рисунок 2 – Схема включения ваттметра в однофазную сеть (точками обозначены генераторные зажимы ваттметра)

Рисунок устройства ваттметра электродинамической системы и схема включения ваттметра в сеть представлена на рисунке 3.

Рисунок 3 – Рисунок обмоток ваттметра электродинамической системы и схема включения ваттметра в сеть: Н – нагрузка; 1 – обмотка для измерения тока нагрузки; 2 – обмотка для измерения напряжения на нагрузке

В трехфазных сетях для измерения мощности используют один, два и три ваттметра. Если нагрузка симметричная и включена «звездой», то достаточно одного ваттметра (рисунок 4, а). Если в этой же схеме нагрузка несимметрична по фазам, то используются три ваттметра (рисунок 4, б). В схеме соединения потребителей «треугольником» измерение мощности производится двумя ваттметрами (рисунок 4, в).

Рисунок 4 – Измерение мощности в трехфазных сетях: а) измерение мощности симметричной трехфазной нагрузки, включенной по схеме звезда с нулевым проводом (четырехпроводная сеть), одним ваттметром; б) измерение мощности трехфазной нагрузки, включенной по схеме звезда с нулевым проводом (четырехпроводная сеть), методом трех ваттметров; в) измерение мощности трехфазной нагрузки, включенной в трехпроводную сеть, методом двух ваттметров

Основным достоинством ваттметра является высокая точность измерения. К недостаткам относятся малая перегрузочная способность, низкая чувствительность к малым сигналам, заметное влияние внешних магнитных полей.

Вернуться3164

Категория: Электротехника, основы электроники / Электрические измерения

  • https://pue8.ru/elektrotekhnik/812-vattmetry-naznachenie-tipy-podklyuchenie.html
  • http://electricalschool.info/spravochnik/izmeren/1357-skhema-vkljuchenija-vattmetra.html
  • http://xn—-etb8afbn2f.xn--p1ai/electrical-engineering/60-izmerenie-moschnosti-seti-vattmetrom.html

Ваттметры поглощаемой мощности радиодиапазона

Ваттметры поглощаемой мощности образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Видовое деление этой подгруппы связано в основном с применением различных типов первичных преобразователей (приемных головок). В серийно выпускаемых ваттметрах используются преобразователи на базе термистора , термопары и пикового детектора ; значительно реже, в экспериментальных работах, применяются датчики, основанные на других принципах — пондемоторном, гальваномагнитном и т.д. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за неидеального согласования входного сопротивления приемных головок с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не падающую мощность, а поглощаемую, которая отличается от падающей на величину, равную K P ×P пад

, гдеK P — коэффициент отражения по мощности.

Термисторные (болометрические) ваттметры состоят из приемного преобразователя на базе термистора (или болометра) и измерительного моста с источником низкочастотного переменного тока для подогрева термистора. Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. В процессе измерения полная мощность, рассеиваемая на термисторе (при подаче на него одновременно измеряемого сигнала и тока подогрева) и, соответственно, сопротивление термистора поддерживается одинаковым с помощью измерительного моста, котоорый уравновешивается изменением тока подогрева. В первых моделях термисторных ваттметров уравновешивание осуществлялось вручную, в современных ваттметрах уравновешивание автоматическое, показания выводятся в цифровом виде. К недостаткам термисторных ваттметров относится их малый динамический диапазон — максимальная мощность рассеивания — несколько милливатт, это ограничение преодолевается использованием аттенюаторов , делящих мощность, но вносящих при этом дополнительную погрешность. ПРИМЕРЫ: М3-22А, М3-28

Калориметрические ваттметры отличаются от термисторных тем, что для поглощения измеряемой мощности используется отдельная нагрузка, от которой тепло передается на термисторный преобразователь через рабочую среду — дистиллированную воду или специальную жидкость. Жидкая среда циркулирует со строго заданной скоростью потока, омывая по очереди входную нагрузку, преобразователь и охлаждающий теплообменник. ПРИМЕРЫ: М3-13, МК3-68, МК3-70

Термоэлектрические ваттметры в качестве первичного преобразователя используют термопару (или блок термопар) прямого или косвенного нагрева. При измерении горячий спай термопары нагревается под воздействием подводимой мощности измеряемого сигнала, при этом вырабатывается термо-э.д.с. Измерительная информация в виде сигнала постоянного тока поступает на электронный блок (аналоговый или цифровой), где обрабатывается и поступает на показывающее устройство. ПРИМЕРЫ: М3-51, М3-56, М3-93

Ваттметры с пиковым детектором просты в устройстве, в отличие от других видов ваттметров способны измерять не только мощность непрерывного сигнала, но и пиковую мощность радиоимпульсов, однако, из-за низкой точности измерения в настоящее время применяются редко. По принципу действия такой ваттметр представляет собой выпрямительный вольтметр переменного тока, имеющий на входе нагрузку с сопротивлением, равным волновому сопротивлению кабеля, и с отчетным устройством, проградуированным в значениях мощности. ПРИМЕРЫ: М3-3А, М3-5А

Схема подключения измерительного прибора

От того, насколько правильно подключен ваттметр в конкретном участке цепи, будет зависеть точность полученных данных. Правильная схема включения ваттметра выглядит следующим образом: неподвижная катушка тока измерительного прибора последовательно соединяется с нагрузкой или потребителями электроэнергии.

Подвижная катушка напряжения последовательно соединяется с добавочным сопротивлением, а затем весь этот участок параллельно подключается к нагрузке. Подвижная часть ваттметра имеет определенный угол поворота, вычисляемый по формуле: α = k2IхIu = k2U/Ru, в которой I и Iu являются соответственно токами последовательной и параллельной катушек прибора.

Поскольку в схеме используется добавочное сопротивление, параллельная цепь устройства будет обладать практически постоянным сопротивлением (Ru). В этом случае угол поворота будет равен: α = (k2/Ru)хIхU = k2IхU = k3P. То есть, мощность цепи будет определяться именно по этому параметру.

В ваттметре равномерно нанесена измерительная шкала, сделанная в одностороннем варианте, когда расположение делений начинается от нуля в правую сторону. Когда электрический ток в неподвижной катушке изменяет свое направление, это приводит к изменению направления поворота и вращающего момента подвижной катушки. Если подключение ваттметра выполнено неправильно и направление тока будет другим, электронный прибор не сработает.

По этим причинам не следует путать зажимы, которые используют для подключения. Последовательная обмотка имеет зажим для соединения с источником питания, называемый генераторным. Параллельная цепь также называется генераторной и имеет собственную нужную клемму, чтобы подключить участок к проводу, соединенному с последовательной катушкой.

При нормальном подключении, токи в катушках прибора от генераторных зажимов направляются к негенераторным.

Разнообразные электрические приборы могут потреблять неодинаковый объем энергии. Есть большое количество технологий, которые дают возможность сэкономить энергию, не утратив качество эксплуатации. Разрабатываются приспособления, которые измеряют энергопотребление и помогают дать оценку затратам. Таковым считается бытовой ваттметр в розетку.

Определение показания ваттметра

Показание ваттметра равно произведению напряжения на зажимах его параллельной цепи , тока его последовательной обмотки и косинуса угла между векторами и (рис. 13.1).

Рис. 13.1. Определение показания ваттметра

Стрелки напряжения

и тока на схеме ваттметра начинаются у зажимов, отмеченных звездочками, так называемых генераторных зажимов.

Из рис. 11.1 следует:

Данное вычисление может быть оформлено и иначе:

При измерении мощности в реальных цепях в зависимости от схемы подключения ваттметра показание последнего может быть как положительным, так и отрицательным. Поэтому результат может получиться и со знаком минус.

Технические параметры

В соответствии с указанными техпараметрами, приспособление крайне полезное в домашнем использовании и дает возможность оценить напряжение в электросети, ток, мощность нагрузки и расходование электричества.

Диапазоны замеров:

  • рабочее и тестируемое напряжение: 80 ~ 260VAC;
  • замеряемый ток: 0-20A;
  • рабочая частота (в электросети): 50-60 Гц;
  • замеряемая мощность: 0-4500Вт;
  • расходование электроэнергии: 0-9999 кВтч (отображается, какое количество электричества за 60 минут затрачивается подсоединенный к такому приспособление электронный прибор);
  • рабочие температурные показатели окружающего пространства: 0-50 градусов;
  • указанные габариты 8,5 на 5 на 2,5 см будут соответствовать реальным параметрам.

Важно! Кроме мощности, такое устройство способно измерять напряжение, электроток, частоту. Другие возможности ваттметров будут зависеть от компании-производителя. Параметры приспособления

Параметры приспособления

Источник: ledsshop.ru

Стиль жизни - Здоровье!