Рассчитать электрическую цепь постоянного тока методом контурных токов

Метод узловых (потенциалов) напряжений

ТОЭ › Методы расчета цепей постоянного тока

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие. В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов)

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4 φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Основные понятия

Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ

    • Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте

      • Контрольная работа №1

      • Контрольная работа №2
  • Электротехника и основы электроники

    • Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил

      • Контрольная работа № 1 Электрические цепи

      • Контрольная работа № 2 Трансформаторы и электрические машины

      • Контрольная работа № 3 Основы электроники
  • Теоретические основы электротехники ТОЭ

    • Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009

    • Переходные процессы Переходные процессы в электрических цепях

    • Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов

      • Задание 1 Линейные электрические цепи постоянного и синусоидального тока

        • Задача 1.1 Линейные электрические цепи постоянного тока

        • Задача 1.2 Линейные электрические цепи синусоидального тока

      • Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками

    • Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010

    • Трехфазные цепи. Расчет трехфазных цепей

    • УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ

    • Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока

Метки

  • алгоритм расчет цепей при несинусоидальных периодических воздействиях
  • алгоритм расчета цепей периодического несинусоидального тока
  • баланс мощностей
  • ВАХ нелинейного элемента
  • Векторная диаграмма
  • ветви связи
  • взаимная индуктивность
  • взаимная проводимость
  • вольт-амперная характеристика нелинейного элемента
  • второй закон Кирхгофа
  • второй закон Кирхгофа для магнитных цепей
  • входная проводимость
  • гармоники напряжения
  • гармоники тока
  • Генератор напряжения
  • генератор тока
  • главные контуры
  • графический метод расчета нелинейных электрических цепей
  • динамическое сопротивление
  • дифференциальное сопротивление
  • емкость двухпроводной линии
  • емкость коаксиального кабеля
  • емкость конденсатора
  • емкость однопроводной линии
  • емкость плоского конденсатора
  • емкость цилиндрического конденсатора
  • закон Ампера
  • закон Био Савара Лапласа
  • закон Ома
  • закон полного тока
  • закон электромагнитной индукции
  • Законы Кирхгофа
  • индуктивность
  • индуктивность двухпроводной линии
  • индуктивность однопроводной линии
  • индуктивность соленоида
  • катушка со сталью
  • Конденсатор в цепи постоянного тока
  • контурные токи
  • коэффициент амплитуды
  • коэффициент гармоник
  • коэффициент искажения
  • коэффициент магнитной связи
  • коэффициент мощности трансформатора
  • коэффициент трансформации
  • коэффициент формы
  • кусочно-линейная аппроксимация
  • магнитная постоянная
  • магнитная цепь
  • магнитный поток рассеяния
  • метод активного двухполюсника
  • метод двух узлов
  • метод контурных токов
  • метод наложения
  • метод узловых напряжений
  • метод узловых потенциалов
  • метод эквивалентного генератора
  • метод эквивалентного источника ЭДС
  • Метод эквивалентных преобразований
  • методы расчета магнитных цепей
  • независимые контуры
  • нелинейный элемент
  • несинусоидальный периодический ток
  • обобщенный закон Ома
  • опорный узел
  • основной магнитный поток
  • параллельное соединение конденсаторов
  • первый закон Кирхгофа
  • первый закон Кирхгофа для магнитных цепей
  • последовательное соединение конденсаторов
  • последовательный колебательный контур
  • постоянная составляющая тока
  • потери в меди
  • потери в стали
  • приведенный трансформатор
  • Примеры расчета схем при несинусоидальных периодических воздействиях
  • принцип взаимности
  • принцип компенсации
  • расчет гармоник тока
  • расчет магнитной цепи
  • расчет нелинейных цепей постоянного тока
  • расчет цепей несинусоидального тока
  • Расчет цепи конденсаторов
  • расчет цепи с несинусоидальными периодическими источниками
  • Резонанс в электрической цепи
  • решение задач магнитные цепи
  • сила Ампера
  • сила Лоренца
  • Символический метод
  • собственная проводимость
  • статическое сопротивление
  • сферический конденсатор
  • теорема об эквивалентном источнике
  • теорема Тевенена
  • топографическая диаграмма
  • Трансформаторы
  • трехфазная система
  • удельная энергия магнитного поля
  • уравнения трансформатора
  • Цепи с конденсаторами
  • частичные токи
  • чередование фаз
  • ЭДС самоиндукции
  • эквивалентная схема трансформатора
  • электрическая постоянная
  • электроемкость
  • энергия магнитного поля

Переменный ток.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.

Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.

Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Читайте дополнительно: Нормы прокладки кабеля под землей

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

Определить токи во всех ветвях схемы на основании метода наложения.

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.

Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке.
Законы Кирхгофа — Теория и задача

Задача 2

Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.

Как и в предыдущей задаче начнем решение с составления уравнений на основании первого закона Кирхгофа. Количество уравнений n-1= 2

Затем составляем уравнения по второму закону для трех контуров. Учитываем направления обхода, как и в предыдущей задаче.

На основании этих уравнений составляем систему с 5-ью неизвестными

Решив эту систему любым удобным способом, найдем неизвестные величины

Для этой задачи выполним проверку с помощью баланса мощностей, при этом сумма мощностей, отданная источниками, должна равняться сумме мощностей полученных приемниками. Баланс мощностей сошелся, а значит токи и ЭДС найдены верно.

Источник

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме. Используются такие матрицы:

  • C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
  • Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
  • Ct – транспонированная матрица С;
  • I – матрица контурных величин;
  • J – матрица источников тока;
  • Е – матрица ЭДС.

При составлении матрицы С каждый элемент Сij

  • 0, если ветвь j не входит в контур;
  • -1, если ветвь входит в контур, направление тока противоположно контурному;
  • 1 – то же самое, но направление тока совпадает с контурным.

В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.

Итоговая формула для расчетов имеет вид:

C∙Z∙Ct∙I=C(Z∙J+E).

Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.

Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставить контурные значения

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей. В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Построение системы уравнений

Построение системы уравнений по рассматриваемой методике выполняется по следующим правилам:

  • Для каждого выбранного контура задается направление обхода;
  • С левой стороны равенств записывается сумма всех произведений искомых токов в ветвях на сопротивление веток. В правую часть записывается сумма источников напряжений, присутствующих в контуре;
  • Если направление искомой величины или источника напряжения такое же, как у заданного направления обхода, то слагаемые пишутся со знаком «плюс», в ином случае они имеют отрицательное значение;
  • Значение токов в ветвях заменяют на их выражение через токи контура.

После выполнения арифметических действий (раскрытие скобок, приведение подобных слагаемых) получается система уравнений, в которых неизвестными величинами являются виртуальные контурные токи.

Решая систему уравнений, получают значения контурных, а затем искомых величин.

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме. Используются такие матрицы:

  • C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
  • Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
  • Ct – транспонированная матрица С;
  • I – матрица контурных величин;
  • J – матрица источников тока;
  • Е – матрица ЭДС.

При составлении матрицы С каждый элемент Сij

  • 0, если ветвь j не входит в контур;
  • -1, если ветвь входит в контур, направление тока противоположно контурному;
  • 1 – то же самое, но направление тока совпадает с контурным.

В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.

Итоговая формула для расчетов имеет вид:

C∙Z∙Ct∙I=C(Z∙J+E).

Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.

Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставить контурные значения

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей. В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Определение и суть метода контурных токов

Векторная диаграмма токов и напряжений

По данному методу в исследуемой цепи выделяются независимые плоские замкнутые контуры, включающие все, без исключения, элементы. Предполагается, что в каждом контуре может протекать некоторый контурный ток. В том случае, если цепь с элементом принадлежит только одному контуру, то ток через входящие в нее элементы равен контурному. Если элемент охватывается несколькими контурами, то он в ней равен алгебраической (с учетом направления) сумме контурных токов.

Разбиение цепи на контуры

Важно! Суммирование должно производиться строго с учетом направления движения при обходе контура. Знак «плюс» – при совпадении направления, «минус» – при противоположном

При составлении уравнений учитываются входящие в схему источники ЭДС и тока.

На практике удобнее преобразовать идеальный источник тока в идеальный источник ЭДС. Преобразование выполняется согласно закона Ома:

U=I∙r, где r – внутреннее сопротивление источника тока (напряжения).

Методика расчета используется как в цепях постоянного, так и переменного напряжения. При расчетах цепей переменного напряжения с реактивными элементами используются комплексные величины, затем вычисляются мгновенные и амплитудные величины токов и напряжений и углы сдвига фаз между ними.

Цепь с реактивными элементами

Суть метода контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Суть метода контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме.  Используются такие матрицы:

  • C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
  • Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
  • Ct – транспонированная матрица С;
  • I – матрица контурных величин;
  • J – матрица источников тока;
  • Е – матрица ЭДС.

При составлении матрицы С каждый элемент Сij

  • 0, если ветвь j не входит в контур;
  • -1, если ветвь входит в контур, направление тока противоположно контурному;
  • 1 – то же самое, но направление тока совпадает с контурным.

В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.

Итоговая формула для расчетов имеет вид:

C∙Z∙Ct∙I=C(Z∙J+E).

Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.

Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставить контурные значения

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей. В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник. В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Определение и суть метода контурных токов

Векторная диаграмма токов и напряжений

По данному методу в исследуемой цепи выделяются независимые плоские замкнутые контуры, включающие все, без исключения, элементы. Предполагается, что в каждом контуре может протекать некоторый контурный ток. В том случае, если цепь с элементом принадлежит только одному контуру, то ток через входящие в нее элементы равен контурному. Если элемент охватывается несколькими контурами, то он в ней равен алгебраической (с учетом направления) сумме контурных токов.

Разбиение цепи на контуры

Важно! Суммирование должно производиться строго с учетом направления движения при обходе контура. Знак «плюс» – при совпадении направления, «минус» – при противоположном

При составлении уравнений учитываются входящие в схему источники ЭДС и тока.

На практике удобнее преобразовать идеальный источник тока в идеальный источник ЭДС. Преобразование выполняется согласно закона Ома:

U=I∙r, где r – внутреннее сопротивление источника тока (напряжения).

Методика расчета используется как в цепях постоянного, так и переменного напряжения. При расчетах цепей переменного напряжения с реактивными элементами используются комплексные величины, затем вычисляются мгновенные и амплитудные величины токов и напряжений и углы сдвига фаз между ними.

Цепь с реактивными элементами

Основные принципы

Любая электротехническая цепь состоит из участков (ветвей), образующих узлы и контуры. Для определения значений тока через любой элемент используют два закона Кирхгофа. Прямое составление уравнений дает систему с их максимальным количеством, равным количеству ветвей. В результате, если множество узлов цепи равно У, а число ветвей Р, то уравнения распределяются следующим образом:

  • Для узлов У-1 по закону Кирхгофа для токов;
  • Для ветвей Р-У+1 по закону Кирхгофа для напряжений.

Данное количество избыточно и приводит к образованию громоздкой системы уравнений большой размерности.

Для упрощения расчетов разработаны методики, которые позволяют сократить количество уравнений до приемлемых значений без снижения точности результатов. Наиболее простым является метод контурных токов.

Источник: ledsshop.ru

Стиль жизни - Здоровье!