Расчет силы тока по мощности 12 вольт

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

  • А, В, С;
  • или же U, V, W.

А так называемая нейтраль обозначается буквой N.

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто — путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой:

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом:

. То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы:

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

https://youtube.com/watch?v=dwaSF3W4TxU

Как перевести ватты в киловатты и обратно

Перевести ватты в киловатты это не только производственная необходимость, достаточно часто эта проблема возникает при покупке бытовой техники в интернете.

Большинство производителей обозначают потребительскую мощность своих устройств в W (watt, Вт, Ватт), которые являются общепринятой величиной.

Но в постсоветских странах платежка за электричество приходит в киловаттах (кВт), потому крайне часто расчетливые хозяева сталкиваются с проблемой, как же определить сколько придется платить за эксплуатацию того или иного бытового прибора. Ватт, согласно международной системе SI (СИ), является производственной единицей измерения мощности.

Мы конечно не станем полноценно углубляться в школьный курс физики, а просто разберемся какими формулами можно воспользоваться для перерасчета.

Соотношение единиц измерения

Разбираясь с основой понятия Ватт, мы уже определились, что он является производной величиной, то есть его можно передать определенным соотношением простых единиц измерения. Согласно определению из школьного учебника, 1 ватт равен мощности, которая необходима для того, чтобы за 1 секунду выполнить работу величиной 1 джоуль.

Следовательно, 1 W можно представить по следующим формулам:

  • 1Вт=1кг*м2/с3;
  • 1Вт=1Дж/с;
  • 1Вт=1Н*м/с.

Как мы видим суть любой единицы измерения, в частности и ватта, можно выразить через разные величины. Переводить их достаточно просто.Но их качественная часть ничтожно мала для практического использования, потому в международных системах расчетов принято использовать десятичную кратность исходных величин.

Наиболее распространенной является приставка «кило» (от греч. «chilioi»), в дословном переводе с языка оригинала означающая тысячу. То есть наличие данной приставки означает, что исходная единица измерения увеличивается в 103 раз.

Обобщив всю вышеизложенную информацию киловатт (kW, кВт) через ватты можно представить следующим образом: 1кВт=1Вт*103.

Кроме вышеупомянутой бытовой техники обозначение мощности в ваттах и киловаттах можно найти на двигателях внутреннего сгорания, электродвигателях и технике основанной на них. Но в этом случае иногда можно найти двойную маркировку, в которой мощность в ваттах стоит рядом с мощностью в лошадиных силах.

Применение данной единицы абсолютно несистемное, ведь она лишь дань памяти о первых паровых машинах, которые постоянно сравнивали с конной тягой. Не все автомобильные производители чтут этот архаизм, и у многих автолюбителей начинает возникать резонный вопрос о том, сколько же «лошадок» у них под капотом.

Само соотношение этих единиц измерения выглядит следующим образом: 1кВт=1,36 л.с.

Несколько примеров

Чтобы было еще легче, а вы понимали, как применить вышеизложенную информацию в реальной жизни, приведем несколько простых жизненных примеров.

Мультиварка

Вы рассматриваете мультиварку на кухню, перед вами множество моделей с разными температурными режимами. На корпусе понравившейся вам есть отметка – 1400W. Вы хотите знать, сколько же киловатт будет потреблять прибор, работая на максимуме. Просто делите это число на 1000 и получаете 1,4 кВт.

Электродвигатель

Приобретая этот прибор для домашней лесопилки или кустарного производства чего-либо, вы обнаруживаете надпись 1,8 kW. Если необходимо пересчитать мощность в ватт, совершаем обратное предыдущему действие и множим на 1000. После «прибавления 3х нолей» узнаем, что мощность электродвигателя 1800 W.

Киловатты общеизвестная единица, ее можно найти не только в приборах, но и в «платежке» за свет

Потому стоит уделить отдельное внимание способу расчета оплаты за электроснабжение. Вы платите не просто за кВт, а за их потребление в час.

Сам принцип решения задачки с измерением киловатт*часов ничем не отличается от вопроса с мощностью: 900Вт*1час=900/1000Вт*1час=0,9кВт*час (0,9kW*h).

В заключение

Напоследок отметим, что любая величина: 100 Вт, 300 Вт, 500 Вт или 10000 Вт конвертируется при помощи этих же формул. Хочется думать, что эта статья помогла разобраться не только с величинами мощности электроприборов (и не только) и их взаимной конвертации, а и с тем, как посчитать свои расходы и понять, в какую сумму обходится эксплуатация того или иного агрегата.

Пример расчёта мощностных показателей

Что такое коэффициент мощности

Наиболее простым примером может считаться расчет потребления энергии симметричной нагрузкой. Сколько будет потреблять электроэнергии трехфазный асинхронный двигатель, подключенный в сеть с линейным напряжением 380 В, и потребляющий ток 10 А по каждой фазе? Коэффициент мощности cosϕ=0.76. Тогда потребляемая мощность равна:

P=√3Uл∙Iл∙cosϕ=√3∙380∙10∙0,76=5000 ВА.

Более сложный расчет бытовой сети:

  • Фазное напряжение – 220 В;
  • Потребление по линиям – 10 А, 5 А, 2 А;
  • Первые две фазы подключены к активной нагрузке (электроплита, чайник);
  • Третья нагружена на люминесцентные светильники с cosϕ=0,5.

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc=220∙10+220∙5+220∙2∙0,5=3520 ВА.

Используя онлайн калькулятор расчетов, можно избавиться от большинства ошибок и сократить время вычислений. Требуется лишь правильно ввести данные по текущим параметрам

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250
0,75 0,98 10 3800
1,00 1,13 14 5300
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

{SOURCE}

Кабели управления

Данные виды электрических кабелей служат для управления стационарными и нестационарными маломощными механизмами и электрооборудованием, используемым в строительной, промышленно-производственной, сельскохозяйственной и других сферах (чаще всего используются для управления электродвигателями).

Распространенные марки и применение электрических кабелей данного вида:

• КУПЭВ. Используются в сетях до 250 В и частотой до 1000 Гц. Применяются для управления различным строительным и производственным оборудованием. • КУГВВ. Кабели управления с гибкими жилами. Используются для питания неподвижных и подвижных электроустановок. Также возможно применение в бытовых целях (например, для управления автоматическими воротами).

Как определить сечение провода по мощности – таблицы и расчеты

Провода и кабели

Популярное сегодня галогенное освещение требует наличия напряжения в 12В. Поэтому в разводку обязательно устанавливается трансформатор. Но странное получается дело, когда домашние мастера в качестве электрического провода берут любые куски этого материала, так сказать, те, которые попали под руку. Чаще всего почему-то сечением 1,5 мм², при этом жалуются на то, что проводка начинает греться, а лампы горят не так ярко. Их ошибка состоит в том, что было неправильно выбрано сечение провода по мощности (таблицу можно такого сравнения найти в свободном доступе в интернете).

Итак, начнем с того, что напряжение 12 В на самом деле безопасное, и человек его не ощущает. Но давайте смотреть на электрические сети не как на провод, по которому подается определенное напряжение, а как на проводку, по которой течет ток с определенной силой. Так вот в контуре к галогенному освещению могут поступать токи большой величины. А, как всем известно, по закону Ома сила тока зависит от мощности потребления и напряжения в цепи. К тому же зависимость по току от напряжения обратнопропорциональная. То есть, чем оно больше, тем безопаснее.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Характеристики трехфазной системы

Формула мощности электрического тока

Трехфазная система электропитания характеризуется несколькими значениями напряжения и тока. Все зависит от того, между какими точками схемы производятся измерения:

  • между фазным проводом и нейтралью – фазное напряжение Uф;
  • между отдельными фазами – линейное Uл.

Соотношение между данными параметрами:

Uл=√3∙Uф.

При симметричном распределении нагрузки токи во всех проводах равны. В четырехпроводной схеме (с заземленным нулем) ток в нулевом проводнике отсутствует, поэтому даже при обрыве нуля сеть продолжает нормально функционировать.

В том случае, когда потребление энергии по фазам различается, в нейтральном проводе протекает некоторый ток. Полный обрыв нейтрального проводника вызывает перекос фаз, поэтому напряжение на проводах может измениться в диапазоне от нуля до линейного.

Последствия увеличения сопротивления нейтрали

Реактивный характер нагрузки учитывается коэффициентом мощности cosϕ. Данная величина пришла из теории комплексных чисел, которые используются, когда необходимо рассчитать параметры цепей переменного тока. В случае активной нагрузки cosϕ=1, но, чем более реактивный характер имеют потребители, тем больше коэффициент уменьшается, показывая, как снижается реальная мощность относительно полной.

Важно! Поэтому для правильного расчета и уменьшения нагрузки на генераторное оборудование в реактивных цепях устанавливают корректоры коэффициента мощности. Цепи с корректором приближают коэффициент cosϕ к единице

Расчет силы тока по мощности и напряжению онлайн

Расчёт силы тока онлайн калькулятор

Онлайн калькулятор производит расчёт по нормируемому напряжению, если напряжение в Вашей местности отличается от нормальных значений, т.е. имеются значительные просадки напряжения, советуем Вам воспользоваться формулами приведёнными ниже.

Просадка напряжения. Кликабельно.

Данные формулы помогут Вам произвести более точный расчёт для Вашей сети

Обращаем Ваше внимание, что формулы для расчёта тока в сети 230 В и в сети 400 В имеют различия. Для получения более точных значений советуем использовать значения напряжения полученные путём измерения действующей величины мультиметром

I— cила тока, А;

P— мощность потребителя, Вт;

U— напряжение в сети, В;

cosφ — коэффициент мощности (от 0 до 1);

Расчёт силы тока по мощности и напряжению для трёхфазной сети:

I = P / ( U ×1,732 × cosφ ) ,

I— cила тока, А;

P— мощность потребителя, Вт;

U— напряжение в сети, В;

cosφ — коэффициент мощности (от 0 до 1);

Коэффициент мощности cosφ определение, теория.

Коэффициент мощностиcosφ — безмерная физическая величина, которая характеризует потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей . Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.Полная мощность прибора состоит из активной и реактивной составляющей (активной и реактивной мощности). Активная составляющая совершает полезную работу, то есть использует электрическую энергию и полностью преобразует в другой необходимый вид энергии. Существуют отдельные приборы, которые в основном работают на данной составляющей, это к примеру обогреватели, электропечи, электроплиты, утюги, лампочки накаливания и т.п. У данных приборов cosφ будет максимально близок к максимальному значению от 0,95 до 1.

Реактивная составляющая возникает в цепях в которых содержаться реактивные элементы, например конденсаторы, катушки индуктивности, электродвигатели различных видов. Т.е. к этой группе относятся практически все приборы в основе которых есть платы и микросхемы, а также электродвигатели. Например, электродрели, отрезные, шлифовальные машинки, штроборезы, бытовая электронная техника. У данных типов приборов cosφ будет находится в диапазоне от 0,5 до 1. Реактивная составляющая обычно считается вредной характеристикой цепи.

Активная и реактивная мощность. Кликабельно.

Анализируя вышеизложенное можно прийти к выводу, что чем меньше реактивная составляющая в нагрузке тем ближе к единице значение cosφ. Чем выше значение cosφ, тем более эффективно работает потребитель электроэнергии.

Примерные значения cosφ для некоторых типов оборудования:

  • лампы накаливания — 1;
  • обогреватели, электропечи, электроплиты и т.п. — 0,95;
  • электродвигатели — 0,85 ..0,87;
  • дрели, отрезные машинки и т.п. — 0,85 ..0,9;
  • электродвигатели компрессоров, холодильников, стиральных машин и т.п. — 0,7…0,85
  • компьютеры, телевизоры, СВЧ печи, кондиционеры, вентиляторы, энергосберегающие лампы — 0,5 ..0,8

Более точные значения cosφ зачастую можно найти в паспорте прибора или на бирке.

Источник

Расчет падения напряжения на проводе для постоянного тока

Теперь по формуле (2) рассчитаем падение напряжения на проводе:

U = ((ρ l) / S) I , (4)

То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.

Вот такие табличные данные будут для длины 1 м и тока 1А:

Таблица 1. Падение напряжения на медном проводе 1 м разного сечения и токе 1А:

S, мм² 0,5 0,75 1 1,5 2,5 4 6 8 10
U, B 0,0350 0,0233 0,0175 0,0117 0,0070 0,0044 0,0029 0,0022 0,0018

Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).

Таблица 2. Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец). Длина = 1 метр

S,мм² I,A 1 1,5 2,5 4 6 10 16 25
1 0,0175 0,0117 0,0070 0,0044 0,0029 0,0018 0,0011 0,0007
2 0,0350 0,0233 0,0140 0,0088 0,0058 0,0035 0,0022 0,0014
3 0,0525 0,0350 0,0210 0,0131 0,0088 0,0053 0,0033 0,0021
4 0,0700 0,0467 0,0280 0,0175 0,0117 0,0070 0,0044 0,0028
5 0,0875 0,0583 0,0350 0,0219 0,0146 0,0088 0,0055 0,0035
6 0,1050 0,0700 0,0420 0,0263 0,0175 0,0105 0,0066 0,0042
7 0,1225 0,0817 0,0490 0,0306 0,0204 0,0123 0,0077 0,0049
8 0,1400 0,0933 0,0560 0,0350 0,0233 0,0140 0,0088 0,0056
9 0,1575 0,1050 0,0630 0,0394 0,0263 0,0158 0,0098 0,0063
10 0,1750 0,1167 0,0700 0,0438 0,0292 0,0175 0,0109 0,0070
15 0,2625 0,1750 0,1050 0,0656 0,0438 0,0263 0,0164 0,0105
20 0,3500 0,2333 0,1400 0,0875 0,0583 0,0350 0,0219 0,0140
25 0,4375 0,2917 0,1750 0,1094 0,0729 0,0438 0,0273 0,0175
30 0,5250 0,3500 0,2100 0,1313 0,0875 0,0525 0,0328 0,0210
35 0,6125 0,4083 0,2450 0,1531 0,1021 0,0613 0,0383 0,0245
50 0,8750 0,5833 0,3500 0,2188 0,1458 0,0875 0,0547 0,0350
100 1,7500 1,1667 0,7000 0,4375 0,2917 0,1750 0,1094 0,0700

Какие пояснения можно сделать для этой таблицы?

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах

Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях. Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

Вт = 1А х 1В

На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:

12А х 220В = 2640 Вт = 2,6 КВт

Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания. А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ. При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.

В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.

Трехфазная электрическая сеть

Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.

Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:

Ватт = √3 Ампер х Вольт или Р = √3 х U x I

Ампер = √3 Вольт или I = P/√3 x U

При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.

Для начала отвечу на вопрос – 16 A сколько киловатт (кВт)?

Все очень просто – напряжение в домашней электрической сети 220В (Вольт), чтобы узнать сколько может выдержать розетка в 16А достаточно – 220 Х 16 = 3520 Ватт, а как мы знаем в 1кВт – 1000 Вт, то получается – 3,52кВт

Если формула из школьной физики P= I * U, где P (мощность), I (сила тока), U (напряжение)

Простыми словами розетка в 16A в цепи 220В, может максимально выдержать 3,5кВТ!

Индукционная плита и розетка

Индукционная плита потребляет 7,5кВт энергии, при всех включенных 4 конфорках. Если разделить в обратном порядке, то получается 7,5кВт (7500Вт)/220В = 34,09А

Как видите потребление 34А, ваша розетка в 16А просто расплавится!

Ну хорошо думаете вы …

Тогда поставлю розетку в 32 – 40 А и подключу плиту! А не тут то было, нужно знать какой провод у вас заложен в стене, а также на какой автомат все выведено в щитке!

Все дело в том, что провода также имеют максимальный порог мощности! Так если у вас заложен провод в 2,5 мм сечением, то он может выдержать всего 5,9кВт!

Также и автомат нужно ставить на 32A, а лучше на 40A. Еще раз ! Там более подробно!

Так что рассчитывайте правильно! Иначе ваша розетка – проводка расплавится от высоко напряжения и запросто может возникнуть пожар!

Понять, как перевести ватты в киловатты, достаточно легко. Один ватт равно одной тысячной киловатта 1Вт=0.001кВт. Тогда, при переводе, следует разделить число ватт на одну тысячу, знак запятой перенести на три цифры влево и получаться кВт. Пример: 2000Вт/ 1000 =2кВт, 50Вт = 0.005 кВт, 1 Вт = 0,001 кВт, 56000 Вт = 56 кВт. Теперь вам ясно, как перевести ватты.

Чтоб понять, как перевести киловатты (кВт) в ватты (Вт) необходимо помнить, что приставка «кило» означает «тысяча». Один киловатт равно тысяча ватт (1кВт = 1000Вт). Чтоб перевести киловатты в ватты, нужно умножить значение киловатт на тысячу. Умножая число на тысячу, знак запятая переносится вправо на три цифры. Пример: 4кВт*1000=4000Вт, 1.5кВт=1500Вт, 50Вт=0.05кВт=50Вт, как видите ничего сложного.

Функции автоматического выключателя

Из названия видно, что это выключатель

, который выключаетавтоматически . То есть,сам , в определенных случаях. Из второго названия — защитный автомат — интуитивно понятно, что это некое автоматическое устройство, которое что-то защищает.

Теперь подробнее. Автоматический выключатель срабатывает и выключается в двух случаях — в случае перегрузки

по току, и в случаекороткого замыкания (КЗ) .

Перегрузка по току возникает из-за неисправность потребителей, либо когда потребителей становится слишком много. КЗ — это такой режим, когда вся мощность электрической цепи тратится на нагрев проводов, при этом ток в данной цепи является максимально возможным. Далее будет подробнее.

Кроме защиты (автоматического выключения), автоматы могут использоваться для ручного выключения нагрузки. То есть, как рубильник или обычный «продвинутый» выключатель с дополнительными опциями.

Ещё важная функция (это само собой) — клеммы для подключения. Иногда, даже если функция защиты особо не нужна (а она никогда не помешает), клеммы автомата могут очень пригодиться. Например, как показано в статье .

Источник: ledsshop.ru

Стиль жизни - Здоровье!