По витку радиусом течет ток магнитное момент силы

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​( N )​ и южный ​( S )​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс. Разделить полюса магнита нельзя

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:

    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{displaystyle {vec {B}}left({vec {r}}right)={mu _{0} over 4pi }int limits _{L_{1}}{frac {Ileft({vec {r}}_{1}right){vec {dL_{1}}}times left({vec {r}}-{vec {r}}_{1}right)}{left|{vec {r}}-{vec {r}}_{1}right|^{3}}},}B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{displaystyle {vec {B}}left({vec {r}}right)={mu _{0} over 4pi }int {frac {{vec {j}}left({vec {r}}_{1}right)dV_{1}times left({vec {r}}-{vec {r}}_{1}right)}{left|{vec {r}}-{vec {r}}_{1}right|^{3}}},}

  • Теорема Ампера о циркуляции магнитного поля:

    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{displaystyle oint limits _{partial S}{vec {B}}cdot {vec {dl}}=mu _{0}I_{S}equiv mu _{0}int limits _{S}{vec {j}}cdot {vec {dS}},}rotB→≡∇→×B→=μj→.{displaystyle mathrm {rot} ,{vec {B}}equiv {vec {nabla }}times {vec {B}}=mu _{0}{vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{displaystyle {vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{displaystyle mathrm {div} ,{vec {E}}={frac {rho }{varepsilon _{0}}}, mathrm {rot} ,{vec {E}}=-{frac {partial {vec {B}}}{partial t}}}divB→=,    rotB→=μj→+1c2∂E→∂t{displaystyle mathrm {div} ,{vec {B}}=0, ,mathrm {rot} ,{vec {B}}=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}}а именно:

Закон отсутствия монополя:

divB→=,{displaystyle mathrm {div} ,{vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{displaystyle mathrm {rot} ,{vec {E}}=-{frac {partial {vec {B}}}{partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{displaystyle mathrm {rot} ,{vec {B}}=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{displaystyle {vec {F}}=q{vec {E}}+qleft,}Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{displaystyle d{vec {F}}=left,}dF→=j→dV×B→,{displaystyle d{vec {F}}=left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{displaystyle {vec {M}}={vec {m}}times {vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{displaystyle U=-{vec {m}}cdot {vec {B}},}

  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:

F→=Kqmr→r3.{displaystyle {vec {F}}=K{frac {q_{m}{vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{displaystyle w={frac {B^{2}}{2mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Что такое однородное и неоднородное магнитное поле

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

В однородном магнитном поле заряженная частица, движущаяся со скоростью ( overrightarrow v) перпендикулярно линиям индукции, подвергается воздействию силы (overrightarrow{F_л}), постоянной по модулю и направленной перпендикулярно вектору скорости (overrightarrow v). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.

Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Сила Лоренца (overrightarrow{F_л}) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:

(F=qE+qleft)

Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.

Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.

Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.

В однородном магнитном поле максимальный вращающий момент (M_{max}) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:

  1. Он пропорционален силе тока в контуре I.
  2. Пропорционален площади контура.
  3. Для контуров с одинаковой площадью не зависит от их формы.

Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту (P_{m}) контура с током:

(P_m=Iast S.)

Величина магнитного момента (P_{m}) характеризует действие магнитного поля на плоский контур с током.

В данном случае значение вращающего момента (M_{max}), действующего на контур с магнитным моментом (P_{m}), принимают равным единице.

Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:

(B=frac{M_{max}}{P_m}.)

Примеры однородных магнитных полей:

  1. Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
  2. Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора (overrightarrow B) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.

Примеры неоднородных магнитных полей:

  1. Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
  2. Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.

Отличия однородного и неоднородного магнитных полей

  1. Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
  2. В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
  3. Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
  4. Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​( q )​ – заряд частицы, ​( v )​ – скорость частицы, ​( B )​ – модуль вектора магнитной индукции, ​( alpha )​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​( B_perp )​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​( m )​ – масса частицы, ​( v )​ – скорость частицы, ​( B )​ – модуль вектора магнитной индукции, ​( q )​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​( alpha )​ (0° < ( alpha ) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​( vec{v}_2 )​, параллелен вектору ( vec{B} ), а другой, ( vec{v}_1 ), – перпендикулярен ему. Вектор ( vec{v}_1 ) не меняется ни по модулю, ни по направлению. Вектор ( vec{v}_2 ) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости ( vec{v}_1 ). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​( T )​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору ( vec{B} ). Частица движется по винтовой линии с шагом ​( h=v_2T )​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Вопросы на тему «Магнитное поле»

Вопрос 1. Что такое магнитное поле?

Ответ. Магнитное поле — это особый вид материи, проявляющий себя действием на движущиеся электрические заряды (токи) и тела, обладающие магнитным моментом.

Вопрос 2. Как возникает магнитное поле?

Ответ. Магнитное поле порождается движущимися зарядами и постоянными магнитами.

Почитайте в нашем блоге отдельную статью про магнитное поле Земли.

Вопрос 3. Как магнитное поле проявляет себя?

Ответ. Магнитное поле действует на движущиеся заряды с определенной силой, называемой силой Лоренца.

Вопрос 4. По какой траектории будет двигаться заряд, влетая в магнитное поле?

Ответ. Когда движущийся заряд попадает в магнитное поле, на него начинает действовать сила Лоренца, выполняющая роль центростремительной силы. Таким образом, заряд будет двигаться по окружности.

Вопрос 5. Как магнитное поле изображают графически?

Ответ. Магнитное поле изображают с помощью силовых линий.

Проблемы с решением задач? Обращайтесь в профессиональный студенческий сервис в любое время!

Магнитное поле: задачи с решением

Как решать задачи на тему «Магнитное поле»? Так же, как и все остальные. Специально для вас мы подготовили общую памятку по решению физических задач и собрали воедино полезные формулы по всем темам. Пользуйтесь и не благодарите!

Задача на магнитное поле №1

Условие

Какова магнитная индукция в центре кругового проводника радиусом 20 см, если сила тока в проводнике равна 4 A. Проводник находится в вакууме.

Решение

Это задача на закон Био-Савара Лапласа. Согласно этому закону, магнитная индукция в центре кругового витка с током определяется по формуле:

B=μμI2r

Подставим значения и вычислим:

B=1·1,25·10-6·4,22=125 мкТл

Ответ: 125 мкТл.

Задача на магнитное поле №2

Условие

Через контур проводника сопротивлением 0,06 Ом проходит магнитный поток, который за 4 секунды изменился на 0,012 Вб. Найдите силу тока в проводнике, если изменение потока происходит равномерно.

Решение

Это задача на закон электромагнитной индукции. В данном случае силу тока можно выразить через закон Ома:

I=εiR

ЭДС самоиндукции, по закону Фарадея:

εi=-∆Ф∆t

Подставляем выражение для ЭДС в формулу для силы тока, и вычисляем:

I=-∆Ф∆t1R=,012·14·,06=,05 А

Ответ: 0,05 А.

Задача на магнитное поле №3

Условие

Заряд 0,004 Кл, движется в магнитном поле с индукцией 0,5 Тл со скоростью 140 м/с под углом 45 градусов к вектору магнитной индукции. Какая сила действует на заряд?

Решение

Это задача на нахождение силы Лоренца, т.е. силы, с которой магнитное поле действует на движущийся электрический заряд. По определению, сила Лоренца равна:

F=qvB·sinα

Подставим значения и вычислим:

F=,004·140·,5·22=,19 Н

Ответ: 0,19 Н.

Задача на магнитное поле №4

Условие

Соленоид длиной l=0,4 м содержит 800 витков, сопротивление его обмоток равно 120 Ом, а напряжение на концах обмотки равно 60В. Какова магнитная индукция поля внутри соленоида?

Решение

Это задача на теорему о циркуляции магнитного поля. Согласно этой теореме:

∮Bdl=μ∑iIiBl=μIN

Силу тока найдем из закона Ома:

I=UR

Теперь выразим индукцию и рассчитаем:

B=μINl=μUNRl=1,25·10-6·40·800120·,4=833 мкТл

Ответ: 833 мкТл.

Задача на магнитное поле №5

Условие

С какой силой однородное магнитное поле действует на проводник длиной 10 см, если сила тока в нем 150 мА. Проводник расположен под углом 45 градусов к вектору магнитной индукции. Магнитная индукция составляет 0,4 Тл.

Решение

Это задача на нахождение силы Ампера, то есть силы, с которой магнитное поле действует на проводник с током. По определению, сила Ампера равна:

F=IBlsinα

Подставим значения, и вычислим:

 F=150·,4·,1·22=4,5 Н

Ответ: 4,5 Н.

Нужно больше задач? В нашем блоге есть целая подборка по разным темам:

  1. Задачи на силу Лоренца.
  2. Задачи на циркуляцию магнитного поля.
  3. Задачи на закон Био-Савара-Лапласа.
  4. Задачи на закон Фарадея.

Источник: ledsshop.ru

Стиль жизни - Здоровье!