Определить внутреннее сопротивление источника тока если во внешней цепи при токе

Закон Ома для замкнутой цепи

Замкнутая цепь (рис. 2) состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.

Рис. 2

По закону Ома для внешнего участка цепи 1 → 2 имеем:

(~varphi_1 — varphi_2 = IR .)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, (~varphi_2 — varphi_1 + varepsilon = Ir). Сложив эти равенства, получим

(~varepsilon = IR + Ir . qquad (1))

Отсюда

(~I = frac{varepsilon}{R + r} . qquad (2))

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.

Так как для однородного участка цепи разность потенциалов есть напряжение, то (~varphi_1 — varphi_2 = IR = U) и формулу (1) можно записать:

(~varepsilon = U + Ir Rightarrow U = varepsilon — Ir .)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

(~U = varepsilon left( 1 — frac{r}{R + r} right) .)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε, т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока ((~R_v gg r)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого (~R ll r), то R + rr, тогда (~U = varepsilon left( 1 — frac{r}{r} right) = 0)
, а сила тока (~I = frac{varepsilon}{r}) — достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием, а максимальную для данного источника силу тока называют током короткого замыкания:

(~I_{kz} = frac{varepsilon}{r} .)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 — 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), Ikz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников «-» одного источника соединяется с «+» второго, «-» второго с «+» третьего и т.д. (рис. 3, а). Если ε1 = ε2 = ε3 а r1 = r2 = r3 то εb = 3ε1, rb = 3r1. В этом случае закон Ома для полной цепи имеет вид, или для n одинаковых источников (~I = frac{n varepsilon_1}{R + nr_1}).

Рис. 3

Последовательное соединение применяют в том случае, когда внешнее сопротивление (~R gg nr_1), тогда (~I = frac{n varepsilon_1}{R}) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все «+» источников соединены вместе и «-» источников — также вместе (рис. 3, б). В этом случае

(~varepsilon_b = varepsilon_1 ; r_b = frac{r_1}{3}.)

Откуда (~I = frac{varepsilon_1}{R + frac{r_1}{3}}) .

Для n одинаковых источников (~I = frac{varepsilon_1}{R + frac{r_1}{n}}) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r.

Иногда применяют смешанное соединение источников.

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I – Сила тока в цепи.

– Электродвижущая сила (ЭДС) – величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника. r – Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR. Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы. По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = – I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U. Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Группа A

№1:
Какое из нижеприведенных утверждений не справедливо?
А) 
Идеальный амперметр накоротко подсоединенный к источнику тока показывает ток короткого замыкания.
B) 
Работы кулоновских и сторонних сил внутри источника тока всегда имеют разные знаки.
C) 
Идеальный вольтметр подсоединенный к полюсам источника тока, показывает падение напряжения на внешнем участке цепи.
D) 
В результате работы источника тока, его ЭДС уменьшается.
E) 
ЭДС — является силовой характеристикой источника тока.
№2:

Выразить через основные единицы, единицу ЭДС.

А) 
Дж·Кл-1
B) 
Кг·м2·А-1·с-3
C) 
Кг·м2·А-1·с-2
D) 
Кг·м2·А·с-3
E) 
В
№3:

На рисунке представлен график зависимости работы сторонних сил от величины ЭДС для трех источников тока. В каком из нижеприведенных соотношений находятся величины переносимых зарядов?

А) 
q2 > q3 > q1
B) 
q2 < q3 < q1
C) 
q2 > q1 > q3
D) 
q2 < q1 < q3
E) 
q2 = q3 = q1
№4:

На рисунке представлена зависимость величины переносимого заряда от работы сторонних сил, для трех различных источников тока. В каком из нижеприведенных соотношений находятся значения ЭДС этих источников.

А) 
E1 > E2 > E3
B) 
E1 < E2 < E3
C) 
E1 > E3 > E2
D) 
E1 < E3 < E2
E) 
E1 = E2 = E3
№5:

Сторонние силы за 5 минут совершили работу 0,72 кДж. Определить величину силы тока в цепи, если ЭДС источника равна 12 В.

А) 
1,2 А
B) 
2 А
C) 
0,2 А
D) 
12 А
E) 
5 А
№6:

В цепи действует источник тока с переменной ЭДС. Используя информацию приведенную на рисунке, определить работу источника тока за время, в течении которого заряд в цепи увеличился с 6 Кл до 12 Кл.

А) 
18 Дж
B) 
48 Дж
C) 
12 Дж
D) 
60 Дж
E) 
36 Дж
№7:

Какой из нижеприведенных графиков наиболее точно отражает зависимость силы тока в замкнутой цепи от сопротивления внешней нагрузки?

А) 
B) 
C) 
D) 
E) 
№8:

Какой из нижеприведенных графиков отражает зависимость падения напряжения на внешнем участке цепи, имеющим постоянное сопротивление, от ЭДС? (Внутреннее сопротивление постоянно).

А) 
B) 
C) 
D) 
E) 
№9:

Сопротивление внешней цепи увеличилось на 20%. Как должно измениться внутреннее сопротивление источника тока, чтобы КПД цепи осталось прежним?

А) 
Уменьшится на 20%.
B) 
Увеличится на 20%.
C) 
Уменьшится на 80%.
D) 
Увеличится на 80%.
E) 
Увеличится на 40%.
№10:

На рисунке приведен график зависимости падения напряжения на внешнем участке цепи от ЭДС. В каком из нижеприведенных соотношений находятся КПД цепи?

А) 
2 > 3 > 1
B) 
2 < 3 < 1
C) 
1 > 2 > 3
D) 
1 < 2 < 3
E) 
1 = 2 = 3
№11:

Какой из нижеприведенных графиков правильно отражает зависимость КПД электрической цепи от величины внешнего резистора?

А) 
B) 
C) 
D) 
E) 
№12:

Амперметр, изображенный на рисунке показывает 2 А. Определить сопротивление внешнего участка цепи, если ЭДС источника тока 12 В, а падение напряжения внутри него 4 В.

А) 
4 Ом
B) 
8 Ом
C) 
2 Ом
D) 
6 Ом
E) 
Нельзя определить, так как не задано внутреннее сопротивление источника тока.
№13:

Какое из нижеприведенных соотношений о показаниях амперметров, изображенных на рисунке, наиболее справедливо?

А) 
I1 = I2 = I3
B) 
I1 > I2 > I3
C) 
I1 > I2 = I3
D) 
I1 < I2 = I3
I) 
I1 = 1/2 I2 = 1/2 I3
№14:

Амперметр, изображенный на рисунке показывает ток 6,5 А. Определить сопротивление одного из резисторов, если ЭДС источника тока 65 В, а его внутреннее сопротивление 1 Ом.

А) 
9 Ом
B) 
5 Ом
C) 
4,5 Ом
D) 
1,8 Ом
I) 
3,6 Ом
№15:

Если к полюсам источника тока подсоединить резистор R1 = 8 Ом, то возникнет ток I. Если заменить резистор на другой R2 = 17 Ом, то возникающий в этом случае ток, будет в два раза меньше, чем в первом случае. Определить внутреннее сопротивление источника тока.

А) 
1 Ом
B) 
26 Ом
C) 
0,5 Ом
D) 
0,25 Ом
E) 
2,1 Ом
№16:

Вольтметр и амперметр, изображенные на рисунке, соответственно показывают 8 В и 1 А. Определить падение напряжения внутри источника тока, если E = 20 В, R2 = 10,8 Ом.

А) 
18,8 В
B) 
10,6 В
C) 
0,2 В
D) 
1,2 В
E) 
0,6 В
№17:

Цепь, состоящая из трех параллельно включенных ламп с сопротивлением 300 Ом каждая, подключена к источнику тока с внутренним сопротивлением 0,2 Ом. определить ЭДС источника, если сила тока в каждой лампе 0,1 А, а сопротивление соединительных проводов 0,1 Ом.

А) 
3,009 В
B) 
300,9 В
C) 
100,3 В
D) 
30,09 В
E) 
10,03 В
№18:

Определить показание амперметра, если вольтметр показывает 14 В. (R1 = R2 = 10 Ом; R3 = 3 Ом; R4 = 7 Ом)

А) 
2 А
B) 
3 А
C) 
4 А
D) 
4,2 А
E) 
6 А

Back  |  Home

Использование параметра внутреннего сопротивления при отработке технологии изготовления источников тока и диагностике их состояния

Измерения внутреннего сопротивления ХИТ
могут быть использованы разработчиками при
отработке технологии их изготовления. В этом
случае наиболее полезной является информация о сопротивлении RΩ, так как она дает возможность лучше выявить все зависимости
между конструктивными и технологическими
параметрами и конечными характеристиками
изделия. Такая информация помогает быстрее
выбрать лучший сепарационный материал, определить допуски при дозировке электролита,
оценить плотность сборки.

Для диагностики технического состояния
ХИТ (степени разряженности, степени деградации, состояния после длительного хранения) в зависимости от природы источников
тока разных электрохимических систем полезной может быть информация и об омическом сопротивлении, и о поляризационном.

У герметичных источников тока с водным
электролитом (щелочных и свинцово-кислотных) осушение сепаратора в результате разбухания электродов и некоторых потерь воды,
изменение плотности сборки электродов и деформация аккумуляторов в результате повышенного давления приводят к увеличению
омического сопротивления. У литиевых источников тока этот эффект выражен меньше, а изменение поверхностной анодной пленки сказывается на поляризационном сопротивлении.

К сожалению, изменения параметров внутреннего сопротивления ХИТ в литературе обычно описывают только качественно.
Из-за большого спектра используемых в разных приложениях источников тока, разнообразия их конструкций и технологий изготовления диагностика состояния ХИТ по величине их внутреннего сопротивления может стать
возможной лишь при накоплении данных относительно конкретных источников тока ,
так как:

  • разброс RΩ свежеизготовленных ХИТ конкретного типа может быть соизмерим с изменением RΩ этого источника тока в процессе разряда; это в наибольшей степени касается отечественных аккумуляторов;
  • разброс внутреннего сопротивления аккумуляторов ведущих зарубежных компаний, таких как SAFT, SANYO, PANASONIC, обычно не превышает 20%;
  • изменения RΩ при изменении степени разряженности зависят от типа источника тока и его емкости;
  • изменения RΩ при изменении степени разряженности и степени деградации различны у разных производителей;
  • диагностика литиевых источников тока по их внутреннему сопротивлению затруднена из-за быстрой пассивации анода, а разброс сопротивления пассивной пленки значительно увеличивается со временем хранения.

Возможности диагностирования состояния
литий-ионных аккумуляторов изучены плохо, но известно, что их омическое сопротивление в процессе разряда увеличивается мало,
а пассивация их анодов разного состава соизмерима с пассивацией металлического литиевого анода в литиевых элементах.

Из сказанного следует, что определение состояния источника тока с неизвестной предысторией эксплуатации весьма проблематично.
Однако при периодическом измерении RΩ
ХИТ в процессе эксплуатации (при одинаковой высокой степени заряженности и температуре) можно прогнозировать его работоспособность. Обычно источники тока считаются работоспособными до тех пор, пока их
фактическая разрядная емкость Сраз не станет
менее 60–50% от номинальной емкости (Сн).
Зависимость Сраз и омического сопротивления в пределах этого периода эксплуатации
достаточно точно описывается эмпирическим
уравнением

Сраз RΩ = const

Поэтому, измерив омическое сопротивление
RΩ используемого источника тока в начале эксплуатации, при периодических последующих
его измерениях можно с достаточной точностью предсказывать реальную емкость ХИТ.
И эта процедура занимает всего несколько секунд. Измерения сопротивления возможны
и на работающих в буферном режиме батареях.

Выявление момента ускорения деградации
источников тока позволяет своевременно принять меры по восстановлению их работоспособности или замене.

По скорости изменения сопротивления в течение срока службы можно судить и о правильности условий эксплуатации.

Сравнение величин RΩ аккумуляторов в составе батареи можно использовать для быстрого выявления «слабых». Деформация аккумуляторов или высыхание сепаратора приводит
к значительному увеличению сопротивления
относительно среднего его значения для всех
аккумуляторов батареи.

Нахождение внутреннего сопротивления[править | править код]

Расчётправить | править код

Понятие расчёт применимо к схеме (но не к реальному устройству). Расчёт приведён для случая чисто активного внутреннего сопротивления (отличия реактивного сопротивления будут рассмотрены далее).

Пусть, имеется двухполюсник, который может быть описан приведенной выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов Uout = φ2 − φ1) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

( begin{matrix}
U_{out1} = U — r I_1 \
U_{out2} = U — r I_2
end{matrix} )
(1)

где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:

( r = frac {U_{out1} — U_{out2}} {I_2 — I_1}, quad
U = U_{out1} + I_1 frac {U_{out1} — U_{out2}} {I_2 — I_1} = U_{out1} + I_1 r )
 

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система (1) записывается следующим образом:

( begin{matrix}
U_{oc} = U — 0 \
0 = U — r I_{sc}
end{matrix} )
 

где Uoc — выходное напряжение в режиме холостого хода (англ. open circuit), то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания (англ. short circuit), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

( r = frac {U_{oc}} {I_{sc}}, quad
U = U_{oc} )
(2)

Таким образом, чтобы расчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:

  • Расчитать выходное напряжение двухполюсника в режиме холостого хода
  • Расчитать выходной ток двухполюсника в режиме короткого замыкания
  • На основании полученных значений найти r и U по формуле (2).

Измерениеправить | править код

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчета — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощенной формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Часто применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нем составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивлениеправить | править код

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль, , только или часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Основные понятия

Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

  • напряжение;
  • сила тока;
  • сопротивление проводника, по которому движутся электроны.

Сила и напряжение

Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении

Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I. Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC)

Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации. Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах. Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

Вам это будет интересно Последовательность в открытии электричества

Сопротивление проводников

Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным. Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе. Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

  • геометрией;
  • материалом.

Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

кВа в кВт — как правильно перевести мощность

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

КПД двигателя внутреннего сгорания

§ 26. Закон Ома для полной электрической цепи. КПД источника тока

Упражнение 19

1. Резистор с сопротивлением R = 2 Ом подключён к источнику тока с ЭДС  = 5 В и внутренним сопротивлением r = 0,5 Ом. Определите силу тока в цепи и падение напряжения на внешнем и внутреннем участках электрической цепи.

2. Реостат подключён к источнику тока с ЭДС  = 4 В и внутренним сопротивлением r = 1 Ом. Постройте график зависимости силы тока от сопротивления той части реостата, по которой проходит ток, I = I(R).

3. При подключении к источнику тока с ЭДС = 2,2 В резистора с сопротивлением R = 4,0 Ом сила тока в цепи I = 0,50 А. Определите силу тока при коротком замыкании источника тока.

Рис. 133

4. На рисунке 133 представлен график зависимости силы тока в реостате от его сопротивления. Определите силу тока при коротком замыкании источника тока и его внутреннее сопротивление.

5. Определите полную мощность, развиваемую источником тока с внутренним сопротивлением r = 0,50 Ом, при подключении к нему резистора с сопротивлением R = 2,0 Ом, если напряжение на резисторе U = 4,0 В.

6. Спираль нагревательного элемента, сопротивление которой R = 38 Ом, подключена к источнику тока с ЭДС  = 12 В и внутренним сопротивлением r = 2,0 Ом. Определите количество теплоты, которое выделится в спирали за промежуток времени t = 10 мин.

7. Два параллельно соединённых резистора, сопротивления которых R1 = 4,0 Ом и R2 = 6,0 Ом, подключили к источнику тока с ЭДС = 12 В и внутренним сопротивлением r = 0,60 Ом. Определите напряжение на резисторах и силу тока в каждом из них.

Рис. 134

8. На рисунке 134 представлена схема электрической цепи, состоящей из источника тока, резистора и идеального вольтметра. Определите работу электрического тока на внешнем участке цепи за промежуток времени t = 10 мин и КПД источника тока.

Рис. 135

9. На рисунке 135 представлена схема электрической цепи, состоящей из источника тока, ключа и трёх резисторов. Выберите из предложенного перечня три верных утверждения. Укажите их номера.

1) Полезную мощность тока на внешнем участке цепи при разомкнутом ключе можно определить по формуле .

2) Мощность, развиваемую сторонними силами источника тока при замкнутом ключе, можно определить по формуле .

3) Полезную работу тока на внешнем участке цепи при замкнутом ключе можно определить по формуле .

4) Работу сторонних сил источника тока при разомкнутом ключе можно определить по формуле .

5) КПД источника тока при разомкнутом ключе η = 80 %.

10. Вольт-амперная характеристика, построенная по результатам экспериментального исследования зависимости напряжения на реостате от силы тока в нём, представлена на рисунке 135.1. Определите силу тока при коротком замыкании источника тока и его ЭДС.

Рис. 135.1

11. Для проведения экспериментального исследования была собрана электрическая цепь, состоящая из источника тока, ключа, соединительных проводов, реостата, амперметра и вольтметра. В ходе исследования зависимости напряжения на реостате от силы тока в нём была составлена таблица.

U, В 0,50 0,70 0,80 0,90
I, А 0,70 0,50 0,40 0,30

Определите ЭДС источника тока и его внутреннее сопротивление.

Рис. 135.2

12. Модуль напряжённости электростатического поля плоского конденсатора, подключённого к источнику постоянного тока (рис. 135.2), Е = 3,0 . ЭДС источника тока = 0,16 кВ, а его внутреннее сопротивление r = 5,0 Ом. Определите расстояние между обкладками конденсатора, если сопротивление резистора R = 15 Ом.

13. Электродвигатель в сети постоянного тока с напряжением U = 220 В потребляет ток силой I = 12 А. Сопротивление обмотки электродвигателя R = 5,0 Ом. Определите механическую мощность и КПД электродвигателя.

14. В электрический чайник налили воду и подключили к источнику тока с ЭДС = 140 В и внутренним сопротивлением r = 4,0 Ом. Вольтметр, подключённый к полюсам источника тока, показывает напряжение U = 120 В. Определите, на сколько увеличится температура воды за промежуток времени τ = 2,0 мин, если её объём V = 1,0 л и КПД чайника η = 70 %. Плотность воды ρ = 1,0 · 103 , удельная теплоёмкость воды c = 4,2 · 103.

Внешнее и внутреннее сопротивление

Все батареи и генераторы обладают внутренним сопротивлением: электроды и электролиты неабсолютные проводники, как и провода обмоток электрических машин. Оно может варьироваться от тысячных долей ома до нескольких ом. Этот физический параметр является ключевым в законе Ома для всей цепи. В качестве математических моделей для рассмотрения и иллюстрации электрических процессов различают:

  • Идеальный источник тока (ИИТ). Генерирует электрический ток, не зависящий от изменений напряжения. Внутреннее сопротивление ИИТ бесконечно, напряжение полностью определяется подключённой схемой. Ни один физический источник тока не может работать в условиях разрыва цепи, поэтому ИИТ возможен только в качестве абстрактной модели.
  • Идеальный источник напряжения (ИИН). Представляет собой устройство, поддерживающее постоянное выходное напряжение независимо от тока, протекающего по контуру. Обладает нулевым внутренним сопротивлением. ИИН удобен для моделирования практических источников, которые можно представить как ИНН с подключённым резистором.

Например, свинцово-кислотные аккумуляторы автомобиля, благодаря низкому внутреннему сопротивлению, способны создавать относительно высокие токи при сравнительно низком напряжении. Однако, с другой стороны, высоковольтные источники должны иметь высокое внутренне сопротивление, чтобы ограничить количество тока, протекающего в результате случайного короткого замыкания.

Вам это будет интересно Какой мультиметр лучше выбрать для дома и автомобиля

Источник: ledsshop.ru

Стиль жизни - Здоровье!