Нормы испытаний высоковольтных выключателей

Как часто нужно проводить испытания электрооборудования под высоким напряжением

Испытания электрооборудования посредством электричества — залог надежности, безопасности и долговечности эксплуатации систем устройства

Именно поэтому, этому вопросу стоит уделить особое внимание. Для создания оптимальных условий работы оборудования необходимо ознакомиться с рекомендациями относительно периодичности выполнения процедур ПУЭ, и выбрать методику в соответствии с текущими задачами предприятия

В частности нормы органа контроля предписывают выполнять проверку:

  • При рабочем напряжении менее 35 кВ — один раз в пять лет;
  • Для кабелей, функционирующих без пробоев во время испытаний на протяжении пяти лет — один раз в два года;
  • Для кабелей, при испытании которых были отмечены пробои — один раз в год;
  • Для кабельных линий на подстанциях, заводах и других закрытых территориях — раз в три года;
  • Для подсоединенных кабелей и перемычек (6-10 кВ) в распределительных устройствах — в процессе ремонта.

Помимо этого испытания необходимы для кабелей, предназначенных под напряжение 110 — 220 кВ. Первая проверка осуществляется через три года, последующие — раз в пять лет;

Документирование результатов измерений

По итогам проведенных работ подготавливается отдельный документ, в котором фиксируются все необходимые данные.

В бытовых однофазных цепях вполне достаточно будет провести три замера. В последних строчках заполняемого протокола обязательно должна присутствовать фраза о соответствии полученных результатов требованиям ПУЭ.

Кроме того, в них вносятся следующие данные:

  1. Дата и объем проведенных обследований.
  2. Сведения о составе рабочей бригады (из обслуживающего персонала).
  3. Используемые при проверке измерительные приборы.
  4. Схема их подключения, окружающая температура, а также условия проведения работ.

По завершении протоколирования измерений журнал с соответствующими записями убирается в надежное место, где он хранится до следующих испытаний. Сохраненные таким образом акты замеров в любой момент могут потребоваться для того, чтобы в аварийных ситуациях служить доказательством исправности поврежденного изделия.

Готовый протокол обязательно заверяется подписью производителя работ и проверяющего, назначенного из состава оперативного персонала. Для оформления актов замеров допускается использовать обычный блокнот, но более законным и надежным способом считается заполнение специального бланка (его образец приводится ниже).

Образец протокола измерения сопротивления изоляции

Заранее подготовленная форма протокола содержит пункты, в которых указываются:

  1. Порядок проведения измерительных операций.
  2. Применяемые при этом средства измерения.
  3. Основные нормативы по контролируемому параметру.

Кроме того, форма актов измерения электропроводок содержит готовые таблицы, подготовленные к заполнению. В таком виде документ составляется на компьютере всего лишь один раз, после чего он распечатывается на принтере в нескольких экземплярах. Такой подход позволяет сэкономит время на подготовку документации и придает актам замеров законченный, официальный вид.

Испытание выключателя многократным включением и отключением

На данном этапе проверки работоспособности автоматического размыкателя применяют две методики:

  • Контроль своевременного размыкания цепи под действием номинального напряжения – не менее 10 циклов отключения и повторного включения.
  • Испытания повышенным напряжением, величина которого определяется нормативными требованиями – 5 циклов.

При тестировании многократным включением, лаборант определяет время срабатывания и плавность хода движущихся частей прибора.

Испытание конденсаторов делителей напряжения воздушных выключателей

При проверке делителя напряжения, на выключатель подаётся эксплуатационная и повышенная нагрузки. Рабочие параметры сверяются с заводским паспортом прибора.

Каждая из характеристик оборудования нормируется, согласно ПУЭ и должна соответствовать требованиям ПУЭ.

Проверка хода якоря электромагнита управления

При размыкании цепи после подачи импульса, катушки с током смещаются, что позволяет обеспечить своевременное отключение. Амплитуда перемещения якоря – нормируемая величина, которая должна составлять не менее 8 мм. Нормативные требования допускают образование погрешности в пределах 1 мм в любую сторону.

Испытание изоляции кабелей 0.4-6-10 кВ

Выполнение приемо-сдаточных, эксплуатационных и контрольных испытаний кабельных линий в Москве и Московской области

Стоимость услуги: от 5 т.р.

Базовое предложение на испытание силовой кабельной линии

Базовое (типовое) предложение подходит для приемо-сдаточных, эксплуатационных (периодических, после ремонта) и контрольных испытаний кабельных линий до 10 кВ, исключая КЛ, выполненные кабелем с изоляцией из сшитого полиэтилена.

Описание: Испытание кабеля 10(6) кВ повышенным напряжением выпрямленного тока в соответствии с текущими Нормами и Правилами с оформлением Протокола испытания силового кабеля по результатам

Примечание: Программа испытаний кабеля может быть уточнена в соответствии с требованиями Сетевой организации и Заказчика

Исходные данные: Допуск к концам кабельной линии, предварительная информация о марке кабеля и протяженности КЛ

Испытываются кабели — испытания:

  • вновь проложенные и после перекладки — приемосдаточные;
  • находящиеся в эксплуатации — плановые по графику;
  • после ремонта или длительного отключения — внеплановые;
  • испытание КЛ в составе работ по определению места повреждения и ремонту кабельных линий — контрольные

При проведении испытаний кабельных линий мы руководствуемся в первую очередь Нормами и Правилами, принятыми крупными электросетевыми операторами по Москве и Московской области, в частнсти, ПАО «МОЭСК».

Такая позиция связана с тем, что сети до 10 кВ включительно «упираются» в принадлежащие им Центры питания (ЦП) и при включении (подаче) рабочего напряжения потребуются протоколы, соответствующие именно их требованиям.

Периодичность испытания кабелей 6-10 кВ

  • 1 раз в год — для основных и резервных кабельных линий, питающих особо ответственных потребителей;
  • 1 раз в 3 года — основные кабельные линии;
  • 1 раз в 5 лет — резервные кабельные линии.

Допускается не испытывать кабельные линии длиной до 60 м, являющихся выводами из трансформаторных подстанций (ТП, РП, РТП) на воздушные линии.

Периодичность испытания кабелей 0,4 кВ

Кабели на рабочее напряжение 0,4 кВ испытываются

  • вновь проложенные и после перекладки — перед включением;
  • после ремонта

Измерение сопротивления

Для высоковольтных испытаний и измерений используют мегаомметр («мега» — размер измерения, «ом» – единица, «метр» — измерять). Это специальный прибор, электронное устройство, которое предназначено для установления сопротивлений больших значений. При испытании применяется тип М4100/1-5 (напряжение от 100 до 2500 В).

Мегаомметры имеют генератор постоянного тока (то есть личный источник питания) и производят расчет показаний в мегаомах.

А теперь давайте разберем, как пользоваться этим предметом.

Для этого зажим З (то есть земля) подключают к корпусу установки, а зажим Л (линия) – непосредственно к проводнику.

Это правило действительно для измерения сопротивления изоляции относительно земли. А для иных электрических цепей зажимы можно использовать в любом положении.

Помимо данных двух зажимов, есть еще Э (экран). Он эффективно уточняет измерения (особенно при больших сопротивлениях). Происходит это за счет устранения влияния тока утечки (физическое явление, связанное с плохой изоляцией электрооборудования).

Перед началом работы установите сопротивление изоляции. Оно должно соответствовать нормам по мегаомметру. Оценить это можно по ручке генератора. Правильные данные будут при вращении ручки 90-150 оборотов в минуту с номинальным напряжением в 120 и разомкнутостью внешней цепи. Фиксируют значение через 60 секунд после того, как установилась средняя частота вращения ручки генератора. Таким образом, это значение и будет сопротивлением изоляции.

Для безопасности и точности операции убедитесь:

  • В чистоте проводов, кабельных воронок, самой проверяемой аппаратуры.
  • В отсутствии напряжения на испытуемом электрооборудовании.
  • Что все детали с пониженным изоляцией и испытательным напряжением отключенные и укороченные.

Возможно искажение данных прибора при плохих погодных условиях (поверхность изолирующие частей электроустановки может быть увлажненная). Этот вопрос также важен в высоковольтных испытаниях, от него зависит точность и безопасность.

Определить уровень увлажненности поможет метод абсорбции. Его принцип состоит в том, что с мегаомметра снимают показания через 15, а затем 60 секунд после подачи напряжения.

Такой метод позволяет определить увлажненность изоляции трансформаторов и электрических машин.

Электродвигатели

Испытание высоковольтного двигателя – самый значимый и в то же время уязвимый элемент проверки. Он обуславливает надежность эксплуатации оборудования.

Чаще всего причиной повреждения электродвигателей является комплекс механических и тепловых факторов.

Ход действий при испытании изоляции высоковольтного двигателя:

  • Определение сопротивления обмоток между фазами (с помощью все того же мегаомметра).
  • Проверку в условиях повышенного напряжения (частота 50 Гц) производят с помощью систем после сборки двигателей (на протяжении 1 минуты). Для успешной проверки не должно произойти скользящих разрядов и перекрытий, большого увеличения тока утечки.
  • Измерение омического сопротивления (предельное значение активного сопротивления) в холодном состоянии (на постоянном токе). Температура при этом должна быть не более 3 градусов. Такая манипуляция помогает определить наличие витковых замыканий, дефектных участков пайки.
  • Замеры и внешний осмотр зазоров между сталью статора (неподвижные часть генератора или двигателя переменного тока) и ротора (вращающаяся часть машины внутри статора).
  • Тестирование электрооборудования на холостом ходу.
  • Проверка работы двигателей под нагрузкой.
  • Оценка функционирования двигателя в условиях вращения двигателя.
  • Испытание витковой изоляции.

Фазы испытания двигателей переменного тока:

  • полный цикл измерений перед эксплуатацией;
  • межремонтная фаза (один раз в несколько лет, в зависимости от нормативов и указаний технического руководителя производства);
  • капитальный ремонт.

Нормы испытаний воздушных выключателей, находящихся в эксплуатации

Испытания воздушных выключателей, интегрированных в высоковольтную кабельную линию, должно проводиться не реже, чем в указанные ниже сроки:

  • При вводе объекта в эксплуатацию, в ходе проведения пусконаладочных операций.
  • В случае капитального ремонта или замены размыкающих устройств.
  • В профилактических целях – между ремонтными операциями, чтобы определить рабочие параметры каждого прибора.
  • Плановые испытания осуществляются не реже, чем 1 раз в 6 лет.

В зависимости от внутренней политики балансодержателя электрической инженерной сети, тестирование может проводиться чаще, с регистрацией полученных результатов в журнале предприятия. Эти данные помогают впоследствии сверить полученные показатели во время проведения обязательной инспекции.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
. Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
. Нельзя проводить испытания воздушных линий связи в грозу.
. Испытываемые проводники (жилы) должны быть заземлены.
. Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
. Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
. Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
. Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Жила «1» подключается к входу «R-» (вход также может быть обозначен, как «-», «Земля» или «З») мегаомметра.
. Жила «1» и вход «R-» мегаомметра заземляются.
. Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.

Условная рабочая схема:

Процесс проведения измерений:

Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
. После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
. При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20)=K*R_1, где:

R_(20)- сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20)=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R=R_(20)* l, где:

R_(20)- сопротивление изоляции при +20 °С;

l — длина испытываемого кабеля;

Возьмем ту же марку кабеля длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:

R=6500* 1,5=7500 МОм

Компания «Кабель.РФ» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку по выгодным ценам.

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец

С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Мегаомметр М4100

Мегаомметр-Ф-4100

Мегаомметр-ЭС-02021Г

Цифровой измеритель Fluke 1507

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Необходимость испытания воздушных выключателей

Испытание воздушных выключателей проводится в плановом или экстренном режиме. Контроль работоспособности размыкающих устройств – обязательная процедура, которая позволяет достичь следующих результатов:

  • Проверка работоспособности размыкателей цепи.
  • Анализ времени срабатывания выключателя при подаче импульса
  • Контроль соответствия фактических параметров устройства заводскому паспорту и нормативным требованиям.
  • Инспекция целостности конструкции гасительной камеры, а также свободного хода движущихся частей.

В процессе обследования, замеренные показатели сравниваются с минимально допустимыми значениями, описанными в ПУЭ.

Требования безопасности при испытаниях

  1. Единоличный осмотр электроустановок и электротехнической части технологического оборудования может выполнять работник, имеющий группу не ниже III, из числа оперативного персонала, находящегося на дежурстве, либо работник из числа административно-технического персонала, имеющий группу V – для электроустановок напряжением выше 1000 В, и работник имеющий группу IV – для электроустановок до 1000 В и право единоличного осмотра на основании письменного распоряжения руководителя.
  2. Не допускается прикасаться без применения электрозащитных средств к изоляторам, изолирующим частям оборудования, находящегося под напряжением.
  3. В электроустановках напряжением выше 1000 В работники из числа персонала, единолично обслуживающие электроустановки, или старшие по смене должны иметь группу по электробезопасности не ниже IV, остальные работники в смене – группу не ниже III.
  4. В электроустановках напряжением до 1000 В работники из числа оперативного персонала, обслуживающие электроустановки, должны иметь группу не ниже III.

Для чего необходимо

Проверка электроустановок должна проводится регулярно, причем ее частота обусловлена мощностью оборудования, его конструктивными особенностями, назначением и степенью износа. Диагностические действия включают в себя комплекс мероприятий, выполнить которые способны исключительно профессионалы. Идентификации подвергаются конкретное изделие или целая группа (от чего зависят сроки и стоимость).

Процедура понадобится фирмам и частным предпринимателям, которые отвечают за собственные либо арендованные установки. Услуга решает сразу несколько важных задач, в число которых входят:

  • уменьшение опасности поражения обслуживающего и рабочего персонала электротоком;
  • снижение риска возгорания, возникающего в результате перегрева техники из-за неисправности отдельных элементов, нарушения целостности изоляции кабеля, механических повреждений и т.д.;
  • определение причин ухудшения работы электроприборов и диагностика на предмет локализации дефектов, позволяющие вовремя найти поломку и устранить ее на начальных стадиях возникновения;
  • проверка аппаратов на соответствие международным нормам и ГОСТам, что требуется для выдачи разрешения на эксплуатацию от контролирующих инстанций.

Обследование изоляционного материала исключает риск короткого замыкания и других негативных процессов, что может сказаться на безопасности и длительности функционирования устройств. По этой причине нередко заказчиками выступают владельцы промышленного оборудования повышенной мощности и ответственные лица на различных предприятиях.

Порядок действий

Проведение высоковольтных испытаний ограничено 10 минутами. Это связано с риском старения изолирующего слоя. Кабели с бумажной и полиэтиленовой изоляцией можно испытывать не более 5 минут. В ходе действия не должно происходить нагревания электрических элементов.

Величина напряжения зависит от вида оборудования. Нормы прописаны в «Правилах эксплуатации электроустановок потребителей».

Проверка совершается бригадой, состоящей не менее чем из двух человек. Если испытание подразумевает работу с напряжение более 1000 В, один из работников должен иметь шестую группу безопасности, а другой – третью.

Результаты проверки оформляются в учетном журнале норм и правил работы в электрооборудовании.

Если применяется напряжение менее 1000 В, достаточно третьей группы для обоих участников испытаний.

Работу могут проводить только лица, достигшие 18 лет и прошедшие профессиональную подготовку в области знания схем и правил испытаний в условиях действующих электроустановок. Это проверяется особой отметкой в удостоверении, которая называется «Свидетельство на право проведения специальных работ» и ПУЭ (правила устройства электроустановок).

Особенности высоковольтных испытаний электрооборудования

Проверки под повышенным напряжением силовых кабелей, электрооборудования подстанций и других энергетических объектов – это сложный и трудоемкий процесс. Он включает в себя:

  • визуальный осмотр электроустановок;
  • проверки силовых трансформаторов;
  • испытания оборудования распределительных устройств;
  • определение характеристик заземляющих устройств;
  • контроль состояния кабельных линий, поиск мест повреждения;
  • тепловизионную проверку аппаратов и контактных соединений;
  • определение сопротивления изоляции кабельных линий и электропроводок;
  • в сетях до 110 кВ – фазировку на стороне ВН;
  • проверку изоляции двигателей, генераторов и прочих силовых вращающихся машин;
  • испытание высоковольтных вводов;
  • измерение частичных разрядов в изоляции оборудования;
  • в сетях с изолированной нейтралью – контроль емкостных токов замыкания на землю;
  • испытание вторичных цепей;
  • проверку устройств РЗиА;
  • контроль сборных и соединительных шин;
  • проверки выключателей нагрузки, разъединителей.

Инженерный проводит комплексные проверки электрооборудования с обнаружением имеющихся дефектов и ликвидацией неисправностей всех уровней сложности. После проведения высоковольтных испытаний в соответствии с действующими нормативными документами составляется технический отчет. Он отражает состояние оборудования и содержит рекомендации по устранению выявленных неполадок.

Измерение сопротивления изоляции.

а) подвижных и направляющих частей, выполненных из органических материалов.

Проводится при капитальном ремонте.
Измерение производится мегаомметром на напряжение 2500 В или от источника напряжения выпрямленного тока. Результаты измерения должны соответствовать данным табл. 4.4.

Таблица 4.4. Наименьшее допустимое сопротивление изоляции подвижных и направляющих частей выключателей, выполненных из органического материала

Номинальное
напряжение, кВ
Сопротивление
изоляции, МОм
Номинальное
напряжение, кВ
Сопротивление
изоляции, МОм
Номинальное
напряжение, кВ
Сопротивление
изоляции, МОм
3-10 300 15-150 1000 220 3000

Примечание: данные табл. 22 приложение 1.1 ПЭЭП.

О порядке проведения измерения изоляции следует руководствоваться указания

б) вторичных цепей, в том числе включающей и отключающей катушек.
Проводится при капитальном и текущем ремонтах.
Сопротивление изоляции должно быть не менее 1 МОм.
Производится мегаомметром на напряжение 1000 В.
О порядке проведения измерения изоляции следует руководствоваться указаниями соответствующими требованиями

Источник: ledsshop.ru

Стиль жизни - Здоровье!