Нормативы расстояний крепления воздуховодов: расчет геометрических данных трассы вентиляции

Естественная вентиляция расчет воздуховодов

Для прямоугольной формы воздуховодов этой концепции проветривания планируют диаметр dЭ равновесный округлому воздуховоду:

В случае использования воздуховодов сделанных не из метала, их удельные издержки давления по трению R, взятые с номограммы для стальных воздуховодов, изменяют, умножив на соответствующий коэффициент k:

  • для шлакогипсовых — 1,1;
  • для шлакобетонных — 1,15;
  • для кирпичных — 1,3.

Избытки давления, Па, на преодоление определённых сопротивлений для разных участков вычисляется за уравнением:

  • где – сумма коэффициентов противодействий на участке;
  • v2/2 — динамическое напряжение, Па, взятое с нормативов.

Для создания концепции непринужденной вентиляции предпочтительно остерегаться извилистых заворотов, множественного числа задвижек и клапанов, так как утраты на местные противодействия как правило в каналах воздуховодов достигают вплоть до 91% от всех затрат.

Естественная вентиляция содержит небольшой радиус воздействия и среднюю результативность для комнат излишками тепла в которых соввем малы, что возможно относить недостаткам, а достоинством — легкость системы, невысокая цена и простота в сервисном обслуживании.

Дистанция между креплениями

В СП 60.13330 и СП 73.13330.2012 указывается, как рассчитывать крепление воздуховодов квадратного и круглого сечения. Также учитываются рекомендации производителей оборудования, прописанные в инструкциях. Чтобы получить правильный результат необходимо знать длину воздуховодов и допустимую дистанцию между креплениями.

Крепления для горизонтальных неутепленных металлических бесфланцевых воздуховодов устанавливаются на расстоянии не больше 4 метров друг от друга. Это требование в равной степени относится к опорам, подвескам, хомутам.

Правило распространяется на прямоугольные и круглые воздуховоды, у которых диаметр или наибольшая сторона не превышают 40 см. Для воздуховодов с прямоугольным сечением или диаметром более 40 см расстояние между креплениями сокращается до 3 метров.

Горизонтальные металлические неизолированные воздуховоды на фланцевом соединении с диаметром или большей стороной до 2 метров монтируются с шагом не более 6 метров между крепежами. Крепление к фланцам не разрешается. Максимальное расстояние между креплениями вертикальных металлических воздуховодов составляет 4,5 метра.

При проектировании даже простейшей кухонной вытяжки оставляют зазоры между поверхностью воздуховода и стенами, потолком, другими коммуникациями и предметами интерьера

Для соединения магистральных участков воздуховодов в качестве фасонных элементов могут применяться гибкие воздуховоды, изготовленные из полимерной пленки. В отдельных случаем они служат в качестве основных элементов для построения вентиляционной магистрали.

Для их крепления гибких полимерных воздуховодов используют кольца из стальной проволоки. Диаметр проволоки должен быть в пределах 3-4 мм, а диаметр самого кольца – на 10 процентов больше диаметра воздуховода. Шаг между кольцами – не больше 2 метров.

При таком типе монтажа вдоль воздуховода натягивают несущий трос, к которому и крепятся кольца. Сам трос крепится к строительным конструкциям с шагом от 20 до 30 метров. Гибкий воздуховод необходимо натянуть, чтобы между кольцами не образовались провисы, снижающие давление в системе.

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Техника безопасности при монтаже воздуховода

Расчет диаметра труб для вентиляции можно делать самостоятельно по таблице

Для работы на высоте применяются надежные подмости (в домашних условиях), сертифицированные леса (в промышленных масштабах). Обязательно используется страховочные пояса. Надеваются защитные очки и перчатки при работе с ватными утеплителями, которые выделяют в атмосферу волокнистые примеси.

Резка утеплителя проводится хорошо заточенным инструментом, желательно за один раз, чтобы не происходило размочаливание материала. При попадании вредного вещества в глаза их промывают большим объемом воды и сразу обращаются к врачу. Специалисты надевают нескользящую обувь для работы на подмостях и защитные каски на голову.

Гибкие трубы для вентиляции

Гибкие вентиляционные трубы производят из алюминиевой фольги или армированного пластика. Аэродинамические свойства гибких вентиляционных труб сравнительно слабы. Поэтому обычно их используют для формирования поворотов на сложных участках, в том числе для транспортировки сред с температурой до +250 градусов.

Алюминиевые вентиляционные трубы состоят из нескольких слоев фольги. Они хорошо гнутся, легкие и удобные в транспортировке. Длина их в растянутом состоянии увеличивается в 3 раза. Но гофрированная внутренняя поверхность снижает пропускную способность вентиляционной трубы. К тому же, в складках собирается пыль.

Полиэфирные

изготавливают из нескольких слоев пластика и металлической фольги. Жесткость конструкции придает каркас из каленой стальной проволоки. Пластиковые гибкие воздуховоды выдерживают температуры от -50 до +70 градусов.

Одной из главных проблем гибких воздуховодов являются высокие потери давления по трассе. Их можно рассчитать, пользуясь диаграммой.

В связи с низкой пропускной способностью, гибкие вентиляционные трубы подходят для систем со скоростью движения воздуха не более 30 метровсек и невысоким давлением. Поэтому их смело можно рекомендовать в качестве воздуховодов для кухонных вытяжек и бытовых вытяжных вентиляторов.

Почему не нужно брать минимальное расстояние между оросителями

Ставить оросители на минимальном расстоянии не имеет смысла, но мы хотим объяснить, что этот параметр нужно знать и вот почему ↓

Слишком близко расположенные оросители могут повлиять на работоспособность системы пожаротушения, так как сработавший ороситель будет заливать тепловой замок соседнего оросителя, тем самым охлаждая его. Соответственно, соседний ороситель не сработает. 

Обратим внимание, что в СП 485 есть требования к минимальному расстоянию: Расстояние между спринклерными оросителями установок водяного пожаротушения должно быть не менее 1,5 м (по горизонтали) (п.6.2.21). Чтобы наглядно понимать, откуда в нормах появилось именно такое требование к минимальному расстоянию между оросителями, достаточно изучить паспорт или руководство по эксплуатации на оросители

На все виды оросителей есть техническая документация. В ней можно найти информацию о назначении, технических характеристиках, параметрах для расчета, графики и эпюры орошения

Чтобы наглядно понимать, откуда в нормах появилось именно такое требование к минимальному расстоянию между оросителями, достаточно изучить паспорт или руководство по эксплуатации на оросители. На все виды оросителей есть техническая документация. В ней можно найти информацию о назначении, технических характеристиках, параметрах для расчета, графики и эпюры орошения.

Рассмотрим более подробно, что такое эпюра орошения. Эпюра орошения — графическое представление интенсивности орошения или удельного расхода оросителя (Рисунок 2). По эпюре орошения можно понять, откуда в нормативах требование по минимальному расстоянию в 1,5 м.

Рисунок 2. Эпюра орошения оросителей СВВ, ДВВ

Красной точкой представлено приблизительное место расположения соседних оросителей относительно сработавшего.

Еще один важный момент: чем ближе мы ставим оросители, тем больше оросителей нужно. А чем больше оросителей на расчетной площади — тем больше расход воды, и выше требуемое давление, а значит нужна более производительная насосная установка. И все это в совокупности сильно удорожает систему в целом, что явно не понравится Заказчику!

Что такое конек?

Коньком называется верхнее ребро конструкции кровли. Этот элемент соединяет между собой скаты крыши, плоскости которых сходятся на нем в одной линии. Так как конек является верхней точкой кровли, то высота крыши определяется по его расположению.

ОБРАТИТЕ ВНИМАНИЕ!

Данный элемент выполняет функции защиты и вентиляции. Он закрывает стыки скатов, предотвращая попадание влаги и грязи во внутреннее пространство кровельного пирога. При этом через конек выходят циркулирующие воздушные массы.

Определение высоты крыши важно не только для целей обеспечения ветро- и снегоустойчивости. Большинство кровельных материалов имеют четкие диапазоны возможных углов скатов для своей установки. При монтаже тяжелых материалов нужно минимизировать нагрузку на единицу площади основания крыши, для этого угол ската (соответственно, и высота конька) увеличивается

При монтаже тяжелых материалов нужно минимизировать нагрузку на единицу площади основания крыши, для этого угол ската (соответственно, и высота конька) увеличивается.

Конек кровли

Если в доме планируется обустройство чердачного помещения, то диапазон возможных углов ската ограничивается требованиями к возможностям технического обслуживания помещения и к его противопожарной безопасности. Для жилых чердаков добавляются требования удобства перемещения по помещению, зависящие от роста жильцов.

Возможные ошибки и последствия

Сечение воздуховодов подбирается по таблицам, где указанны унифицированные размеры, зависящие от динамического давления и скорости движения. Часто неопытные проектировщики округляют параметры скорости/давления в меньшую сторону, отсюда следует изменение сечения в меньшую сторону. Это может привести к избыточному шуму или невозможности прохода требуемого объёма воздуха за единицу времени.

Ошибки допускаются и в определение длины отрезка воздуховода. Это ведёт к возможной неточности в подборе оборудования, а также к ошибке в расчёте скорости движения газа.

Пример проекта

Аэродинамическая часть, как и весь проект, требуют профессионального подхода и внимательного отношения к деталям конкретного объекта.

выполняет квалифицированный подбор систем вентилирования по действующим нормам, с полным техническим сопровождением. Предоставляем услуги в Москве и области, а также соседних регионах. Подробная информация у наших консультантов, все способы связи с ними указаны на странице «Контакты».

Монтаж пластиковых воздуховодов вентиляции на больших объектах

Суть монтажных работ по установке воздуховодов из ПВХ на крупных объектах практически не отличается от монтажа в бытовых условиях, но все же есть некоторые небольшие отличия.

К ним относится тот факт, что при масштабных работах использованию подлежат модели воздуховодов больших размеров. Их труднее устанавливать, крепить и соединять между собой.

Такого рода работы выполняют только квалифицированные монтажники. Ведь любая ошибка может стоить заказчику потери комфорта или финансов.

При разработке проекта очень тщательно учитываются условия эксплуатации, чтобы точно и рационально определить вид устанавливаемых пластиковых воздуховодов.

Расчет креплений при работе на таких объектах является уже обязательным условием

В принципе, аналогичной будет и последовательность монтажа. Правда на крупных объектах, учитывая большую производительность системы, будут использоваться больше оборудования: вентиляторы, кондиционеры, чиллера, рекуператоры. Такие системы состоят из многих ответвлений, регулирующих устройств, и зачастую оборудывают автоматикой.

Есть и другие особенности. В торговых центрах или административных зданиях принято прятать воздуховоды под подвесной потолок, чтобы предать наиболее высокий внешний вид.

Также, после выполнения монтажа пластиковых воздуховодов на больших объектах, выполняют аэродинамические испытания, в результате которых составляют акт.

Учитывая небольшой вес и почти универсальность в применении, воздуховоды из ПВХ очень часто принимают к установке и в промышленности, и в жилых домах, и в торгово-развлекательных центрах. И, напоследок, видео о монтаже пластиковых воздуховодов.

Санитарные нормы

Скорость движения воздуха в воздуховодах непосредственно зависит от таких не менее важных показателей, как уровень шума и вибрации. Воздух, который проходит по каналам, с увеличением количества различных изгибов шахты и поворотов пропорционально увеличивает количество издаваемого шума и вибрации от движения.

По мере уменьшения сопротивления будет снижаться давление в вентиляционной системе и, конечно же, скорость движения кислорода. Для того чтобы понять общие правила выбора оборудования и его правильного расчёта, нужно узнать нормы основных факторов, которые влияют на выбор.

Уровень шума

Нормы, которые можно найти в СНиПах по этому вопросу, касаются всех видов жилых помещений: многоквартирных и частных домов, производственных и общественных зданий.

Согласно таким нормам, необходимо не превышать максимально допустимый уровень шума в следующих помещениях:

  • палаты, больницы, санатории — днём до 50 Дб, а ночью до 40 Дб;
  • учебные кабинеты — до 55 Дб;
  • жилые квартиры — до 55 Дб днём и до 45 Дб ночью;
  • в зданиях, которые прилегают к больницам и санаториям — днём до 60 Дб, ночью до 50 Дб;
  • территории, которые прилегают к жилым зданиям — днём до 70 Дб, а ночью до 60 Дб;
  • непосредственно возле здания школы — до 70 Дб.

Показатель вибрации

Так же, как и уровень шума, вибрация напрямую влияет на скорость движения кислорода в шахтах. При этом такой показатель зависит от множества факторов. К ним можно отнести качество прокладок (их функция заключается в снижении уровня вибрации), размер воздуховода, скорость кислорода (который движется по каналам), материал для изготовления шахт и прочие нюансы.

Что касается цифр, то уровень вибрации должен быть в пределах 109—115 Дб. Если при проверке эти показатели будут превышены, то необходимо исправлять технические недочёты, допущенные при проектировании, или заменить вентилятор, который работает очень громко.

Скорость потока воздуха в вентиляции по нормам СНиП не должна влиять на увеличение таких показателей, как излишний шум или вибрация.

Общие правила

Система воздуховодов должна обеспечивать выполнение ряда функций, для которых каналы должны обладать следующими качествами:

  • тепло- и шумоизоляция
  • плотность соединений, герметичность
  • установка в неиспользуемых участках объема помещений, компактность
  • устойчивость ко всем нагрузкам, как внешним, так и внутренним, прочность

Правила монтажа воздуховодов изложены в СП 60.13330 (Отопление, вентиляция и кондиционирование) и в СП 73.13330.2012 (Внутренние санитарно-технические системы зданий). В них изложены нормы и требования к монтажу, определены допустимые параметры и виды несущих конструкций. В частности, указывается необходимость установки в отдалении от горячих поверхностей или установок, наличие заземления.

Установлены правила соединения и подвески всех типов воздушных каналов, определены правила подвеса к потолочной плите или несущему элементу

Особое внимание уделяется правилам герметизации воздуховодов, позволяющим уменьшить утечки или потери и повысить производительность системы

Техника безопасности при монтаже воздуховода

Существует колоссальная разница между монтажом пластиковой домашней вентиляции и установкой массивного промышленного воздуховода – высотные работы всегда отличались высокой степенью риска. Однако учитывая, что на производственных объектах вентиляцию устанавливают профессиональные альпинисты, мы предупреждаем вас о тех недоразумениях, которые могут произойти дома.

  • Небольшая высота остается травмоопасной – выбирайте для работы надежные леса и подмости. Крайне не рекомендуется работать с лестницы или стремянки без страховки.
  • Работа с теплоизоляцией – исключительно в перчатках, желательно – в очках. Для резки используем самый острый нож или ножницы из тех, что есть в наличии – чтобы волокно не мочалилось и не разлеталось по помещению.
  • Если минеральная вата все же попала в глаза, их следует тщательно промыть большим количеством воды и обратиться к офтальмологу. Первый симптом – зуд.

Если соблюдать эти несложные правила, вы быстро и легко установите дома систему воздуховодов любого уровня сложности.

Некоторые экономические аспекты подбора размеров воздухопровода

Таблица для расчета гидравлического диаметра воздуховода.

При расчете размеров и скорости воздуха в воздуховоде наблюдается такая зависимость: при увеличении последней диаметры каналов уменьшаются. Это дает свои преимущества:

  1. Проложить трубопроводы меньших размеров гораздо проще, особенно если их нужно подвешивать на большой высоте или если условия монтажа весьма стесненные.
  2. Стоимость каналов меньшего диаметра соответственно тоже меньше.
  3. В больших и сложных системах, которые расходятся по всему зданию, прямо в каналы необходимо монтировать дополнительное оборудование (дроссельные заслонки, обратные и противопожарные клапаны). Размеры и диаметры этого оборудования также уменьшатся, и снизится их стоимость.
  4. Прохождение перекрытий трубопроводами в производственном здании может стать настоящей проблемой, если его диаметр большой. Меньшие размеры позволят пройти так, как нужно.

Главный недостаток такого выбора заключается в большой мощности вентиляционного агрегата. Высокая скорость воздуха в малом объеме создает большое динамическое давление, сопротивление системы растет, и для ее работы требуется вентилятор высокого давления с мощным электродвигателем, что вызывает повышенный расход электрической энергии и, соответственно, высокие эксплуатационные затраты.

Другой путь – это снижение скорости воздушных потоков в воздуховодах. Тогда параметры вентиляционного агрегата становятся экономически приемлемыми, но возникает множество трудностей в монтаже и высокая стоимость материалов.

Схема организации воздухообмена при общеобменной вентиляции.

Проблемы прохождения большой трубой перегруженных оборудованием и инженерными сетями мест решается множеством поворотов и переходов на другие виды сечений (с круглого на прямоугольное или плоскоовальное). Проблему стоимости приходится решать единоразово.

Во времена СССР проектировщики, как правило, старались найти компромисс между этими двумя решениями. В настоящее время удорожания энергоносителей появилась тенденция к применению второго варианта. Собственники предпочитают единоразово решить финансовые вопросы и смонтировать более экономичную вентиляцию, чем потом в течение многих лет оплачивать высокие затраты электроэнергии. Применяется и универсальный вариант, при котором в магистральных воздухопроводах с большими расходами скорость потока увеличивают до 12-15 м/с, чтобы уменьшить их диаметры. Дальше по системе соблюдается скорость 5-6 м/с на ответвлениях, вследствие чего потери давления выравниваются. Вывод здесь однозначный: скорость движения воздушного потока в каналах играет немаловажную роль для экономики предприятия.

2.3.127

Высота кабельных колодцев должна быть не менее 1,8
м; высота камер не нормируется. Кабельные колодцы для соединительных, стопорных
и полустопорных муфт должны иметь размеры, обеспечивающие монтаж муфт без
разрытия.

Береговые колодцы на подводных переходах должны иметь
размеры, обеспечивающие размещение резервных кабелей и подпитывающих аппаратов.

В полу колодца должен быть устроен приямок для сбора
грунтовых и ливневых вод; должно быть также предусмотрено водоотливное
устройство в соответствии с требованиями, приведенными в 2.3.114.

Кабельные колодцы должны быть снабжены металлическими
лестницами.

В кабельных колодцах кабели и соединительные муфты должны
быть уложены на конструкциях, лотках или перегородках.

Толщина стали для воздуховодов по СНиП

Это достаточно серьезный показатель, который определяет жесткость воздуховодов. И зависит он от диаметра изготавливаемых труб.

  • диаметр 80-315 мм – толщина используемого оцинкованного листа – 0,5 мм:
  • диаметр 355-800 мм – толщина 0,7 мм;
  • диаметр 900-1250 мм – толщина 0,9 мм;
  • 1400-1600 мм – толщина стенки 1,2 мм.

Толщина стали для воздуховодов – это один из важных параметров, не зря его точно обозначили в СНиПе. Поэтому, изготавливая вентиляционные трубы, надо строго придерживаться выше обозначенных соотношений. При этом надо обозначить, что нет никакой разницы, какие трубы будут изготавливаться – воздуховоды класса П или Н. о них чуть ниже.

Требования СНиП к воздуховодам

Требования СНиП предусматривают проверку и чистку дымохода и вент труб:

  • до наступления отопительного сезона;
  • не реже 1 раза в 3 месяца (для комбинированных и кирпичных каналов);
  • не реже 1 раза в 12 месяцев (для асбестоцементных каналов и дымоходов, а также для гончарных труб и труб, сделанных из жаропрочного бетона).

При первичной проверке вент каналов и дымоходов проверяются материалы, из которых они были изготовлены, наличие засоров в каналах, наличие отдельных дымовых и вентиляционных ходов. Нормы СНиП категорически запрещают вывод отработанных продуктов горения через вентиляционный канал.

Осуществлять прочистку вентиляционных каналов владелец жилья имеет право только после прохождения инструктажа и при наличии соответствующего документа о пройденном инструктаже. Приступая к возведению вентиляционной трубы, владелец обязан поставить об этом в известность эксплуатационную организацию, являющуюся владельцем дома. По завершении работ эта же организация должна проверить и дать разрешение на эксплуатацию воздуховода.

Расчёт площади воздуховодов и фасонных конструкций: как правильно спроектировать конструкцию и рассчитать показатели

Основным параметром, характеризующим эффективность вентиляционной системы, является расход воздуха. Его определяют как сумму значений на отдельных участках воздуховодов со стабильным расходом, ограниченных ответвлениями или заслонками.

На каждом таком участке осуществляется расчёт площади воздуховодов и фасонных изделий. При определении формы вентканалов и их квадратуры основным параметром является скорость воздушного потока. Её указывают в нормативах и строительных правилах (СП).

Для магистральных трубопроводов она не должна превышать 8 м/с, для ответвлений – не более 5 м/с. А в месте поступления в помещение скорость ограничена до 3 м/с.

Проектирование вентиляционных систем и их элементов является многоэтапной инженерной задачей

Зачем нужен расчёт площади воздуховодов и фасонных изделий?

Определение квадратуры воздуховодов необходимо для создания эффективно функционирующей вентиляционной системы и оптимизации её характеристик:

  • объёмы перемещаемого воздуха;
  • скорости воздушных масс;
  • уровня шума;
  • энергопотребления.

Кроме того, расчёт должен обеспечивать целый перечень дополнительных эксплуатационных характеристик. К примеру, надлежащий температурный режим в помещении. То есть вентиляционная система должна удалять избыток тепла и влажности или минимизировать теплопотери. При этом максимальная/минимальная температура и скорость поступающего в помещение воздуха приводятся к соответствующим нормативам.

Регулируются и качественные параметры поступающего воздуха, а именно: его химический состав, количество взвешенных частиц, наличие и концентрация взрывоопасных элементов и т.п.

Вентиляционная решётка короба квадратного сечения

Какие данные нужны для расчёта эксплуатационных характеристик воздуховодов?

Прежде всего, во внимание принимаются основные параметры сооружения, такие как назначение самого здания, объём помещений, количество постоянно пребывающего персонала и посетителей, особенности производственного процесса (для промышленных зданий) и т.п. Проектирование систем вентиляции осуществляется в соответствии со следующими нормативными документами:

Проектирование систем вентиляции осуществляется в соответствии со следующими нормативными документами:

  • СП 60.13330.2016 (актуальная редакция СНиП 41-01-2003);
  • СП 7.13130.2013;

Этап третий: увязка ответвлений

Когда проведены все необходимые расчёты необходимо произвести увязку нескольких ответвлений. Если система обслуживает один уровень, то увязывают ответвления не входящие в магистраль. Расчёт проводят в том же порядке, что и для основной линии. Результаты заносятся в таблицу. В многоэтажных зданиях для увязки используются поэтажные ответвления на промежуточных уровнях.

Критерии увязки

Здесь сопоставляются значения суммы потерь: давления по увязываемым отрезкам с параллельно присоединённой магистралью. Необходимо чтобы отклонение составляло не более 10 процентов. Если установлено, что расхождение больше, то увязку можно проводить:

  • путём подбора соответствующих размеров сечения воздуховодов;
  • при помощи установки на ответвлениях диафрагм или дроссельных клапанов.

Иногда для проведения подобных расчётов необходим всего лишь калькулятор и пара справочников. Если же требуется провести аэродинамический расчёт вентиляции больших зданий или производственных помещений, то понадобится соответствующая программа. Она позволит быстро определить размеры сечений, потери давления как на отдельных отрезках, так и во всей системе в целом.

https://www.youtube.com/watch?v=v6stIpWGDow Video can’t be loaded: Проектирование систем вентиляции. (https://www.youtube.com/watch?v=v6stIpWGDow)

Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора

Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1

Заключение

Мы рассмотрели все аспекты монтажа гибких воздуховодов. Удачи в Ваших проектах!

Источники

  • https://RSVgroup.ru/ventilyatsiya/montazh-vozduhovodov.html
  • https://StrojDvor.ru/ventilyaciya/pravila-montazha-i-sxemy-ustanovki-vozduxovoda/
  • https://vseotrube.ru/ventilyatsiya-i-dymohod/pryamougolnye-vozduhovody
  • https://KrepezhInfo.ru/montazh-vozduhovoda/
  • https://www.air-ventilation.ru/montazh-vozduhovodov.htm
  • http://airducts.ru/kreplenie-vozduxovodov/
  • https://1poclimaty.ru/montazh/vozduxovoda-dlya-kuxonnoi-vytyazhki.html
  • https://www.AirClimat.ru/Montazh-vozduhovodov.htm
  • https://sovet-ingenera.com/vent/montazh/montazh-vozduxovodov.html
  • http://airducts.ru/montazh-gibkix-vozduxovodov/

Источник: ledsshop.ru

Стиль жизни - Здоровье!