Лампа накаливания потребляет ток равный 0 6 а температура вольфрамовой нити

Цвет свечения лампочек

Цветовая температура (t0) также является важным показателем.
Цветовая t0 представляет собой характеристику хода интенсивности светового излучения лампочки и является функцией длины волны, определенной для оптического диапазона. Данный параметр измеряется в кельвинах (К).

Цветовая температура для лампы накаливания

Стоит отметить, что цветовая температура для ЛН находится примерно на уровне 2700 К (для источников света с мощностью от 5 до 60 Вт и выше). Цветовая t0 ЛН находится в красной и тепловой оттеночной области видимого спектра.
Цветовая t0 полностью соответствует степени нагревания вольфрамовой нити, что не дает возможность ЛН быстро выйти из строя.

Таким образом, чем больше будет мощность ЛН (от 5 до 60 Вт и выше), тем больше будет происходить нагревание вольфрамовой нити и самой колбы. Соответственно, тем больше будет цветовая t0. Ниже приведена таблица, по которой можно сравнить эффективность и потребление мощности разных видов лампочек. В качестве группы контроля, с которой ведется сравнение, здесь взяты ЛН мощностью от 20 до 60 и до 200 Вт.

Сравнительная таблица мощностей разных источников света

Как видим, лампы накаливания по данному параметру значительно проигрывают в плане потребления мощности другим источникам света.

Расчет оптимальной мощности светодиодных ламп

Проводить расчет оптимальной мощности освещения рекомендовано при ремонте и установке светильников. Так, вы всегда будете знать, какой мощности вам необходимо приобретать лампы и на сколько их хватит. В том случае, если вам необходимо знать, какая мощность должна быть у светодиодов в одном помещении, необходимо знать определенные параметры:

  • Уровень освещенности;
  • Площадь одной комнаты;
  • Количество ламп, которые необходимо установить;
  • Световой поток;
  • Уровень освещенности помещения.

Для расчета светового потока, который исходит от одной лампы, необходимо использовать следующую формулу:

· С.П = У.О.*П.К./К.Л.

Если же вам необходимо узнать уровень освещенности на один квадратный метр, то воспользуйтесь формулой:

· У.О.=К.Л.*С.П./П.О.

Стоит отметить, что при установке источников света необходимо знать, что эффективный угол света светодиодов составляет примерно 120 градусов. Поэтому рассчитываете расположение так, чтобы на каждый квадратный метр попадало достаточное количество света.

В том случае, если вы используете не люстру, а лампочки, установленные на потолке, то уровень интенсивности света должен быть в 1/2 раза выше.

Также для расчёта Вы можете воспользоваться онлайн-калькуляторами, где необходимо ввести определенные параметры. После этого система автоматически рассчитает оптимальный уровень освещенности помещений.

Особенности источника света

Лампы накаливания представляют собой самый первый источник электрического света, который был изобретен человеком. Данная продукция может иметь разную мощность (от 5 до 200 Вт). Но наиболее часто используются модели на 60 Вт.

Перед тем, как приступать к рассмотрению таких параметров, как температура нагрева и цветовая температура, необходимо разобраться в конструкционных особенностях подобных ламп, а также в принципе ее работы. Лампы накаливания в ходе своей работы преобразует электрическую энергию, проходящую по вольфрамовой нити (спирали) в световую и тепловую. На сегодняшний день излучение, по своей физической характеристике, делится на два типа:

Эти клиенты и некоторые другие имеют фундаментальное непонимание ламп накаливания на 130 вольт. Однако это не их вина, это наше. Поэтому позвольте мне попытаться разобраться в этом вопросе раз и навсегда. Тем не менее, вы также можете использовать лампу с более толстой нитью, которая уменьшает сопротивление тока, так что он течет более легко. Этот метод, как указывалось ранее, является подходом, используемым лампой накаливания на 130 вольт. Поскольку ток, проходящий через более толстую нить, меньше сопротивляется, для производства света требуется меньше энергии.

Устройство лампы накаливания

  • тепловое;
  • люминесцентное.

Под тепловым, которое характерно для ламп накаливания, подразумевается световое излучение. Именно на тепловом излучении основано свечение электрической лампочки накаливания. Лампы накаливания состоят из:

  • стеклянной колбы;
  • тугоплавкой вольфрамовой нити (часть спирали). Важный элемент всей лампы, так как при повреждении нити лампочка перестает светиться;
  • цоколя.

В процессе работы таких ламп происходит повышение t0 нити из-за прохождения через нее электрической энергии в виде тока. Чтобы избежать быстрого перегорания нити в спирали, из колбы выкачивают воздух

Обратите внимание! В более продвинутых моделях ламп накаливания, коими является галогеновые лампочки, вместо вакуума в колбе закачан инертный газ. Установка вольфрамовой нити происходит в спираль, которая закреплена на электродах

В спирали нить находится посередине. Электроды, к которым происходит установка спирали и вольфрамовой нити, соответственно, припаиваются к разным элементам: один к металлической гильзе цоколя, а второй – к металлической контактной пластине. В результате такой конструкции электрической лампочки, ток, проходя через спираль, вызывает нагрев (повышение t0 внутри колбы) нити, так как он преодолевает ее сопротивление.

Более свободно движущийся ток также не приводит к тому, что нить накапливается так, что цветовая температура света также ниже. Очень небольшое снижение напряжения и люмен приводит к значительному увеличению срока службы и значительному снижению энергопотребления. Например, снижение напряжения только на 8% приводит к 300% -ному увеличению срока службы и почти 15% -ному снижению энергопотребления только с 25% -ной потерей светового потока!

Теперь вернемся к первоначальному вопросу: зачем покупать лампочки на 130 вольт? Ответ прост. Покупайте лампочки накаливания на 130 вольт, когда вы хотите экономить энергию, реже меняйте свои луковицы и не упустите немного меньшего светового потока и более теплую цветовую температуру.

Кто изобрел лампу накаливания?

Уоррен де ла Рю только что изобрел лампу накаливания и думает, где бы ему раздобыть еще немного платины

Не Эдисон. Он лишь улучшил существовавшие в то время модели и создал первую лампу, которая смогла проработать 40 часов. А изобрели лампу накаливания задолго до этого. Кто же был первым? Рискну предположить, что титул изобретателя должен достаться Уоррену де ла Рю (Warren De la Rue), британскому астроному и химику. В 1820 году он поместил в трубку, из которой был откачан воздух, платиновую проволоку и пропустил через нее электрический ток. Его изобретение так и не получило широкого распространения и тем более не пошло в массовое производство (догадайтесь почему).

Зависимость сопротивления нити лампы накаливания от напряжения

Напряжение 2 4 6 8 10 12 14 16
% напряжения 8.3 16.7 25.0 33.3 41.7 50.0 58.3 66.7
Ток 0.55 0.7 0.84 0.97 1.08 1.19 1.29 1.38
Сопротивление 3.6 5.7 7.1 8.2 9.3 10.1 10.9 11.6
Мощность 1.1 2.8 5.04 7.76 10.8 14.28 18.06 22.08

(продолжение таблицы)

Напряжение 18 20 22 24 26 28 30 32
% напряжения 75.0 83.3 91.7 100.0 108.3 116.7 125.0 133.3
Ток 1.47 1.55 1.63 1.7 1.77 1.84 1.92 2
Сопротивление 12.2 12.9 13.5 14.1 14.7 15.2 15.6 16.0
Мощность 26.46 31 35.86 40.8 46.02 51.52 57.6 64

(Номинальные параметры выделены)

Как видно из таблицы, зависимость сопротивления лампочки от напряжения нелинейная. Это может проиллюстрировать график, приведенный ниже. Рабочая точка на графике выделена.

Сопротивление нити лампы накаливания в зависимости от напряжения

Кстати, сопротивление подопытной лампочки, измеренное с помощью цифрового мультиметра – около 1 Ома. Предел измерения – 200 Ом, при этом выходное напряжение вольтметра – 0,5 В. Эти данные также укладываются в полученные ранее.

Зависимость мощности от напряжения:

Зависимость мощности от напряжения

Для ламп на напряжение 230 В на основании экспериментальных данных была составлена вот такая табличка:

Мощность лампочки, Вт 25 40 60 75 100
R холодной нити,Ом 150 90-100 60-65 45-50 37-40
R горячей нити, Ом 1930 1200 805 650 490
Rгор./Rхол. 12 12 13 13 12

Из этой таблицы видно, что сопротивление нити лампы накаливания в холодном и горячем состоянии отличается в 12-13 раз. А это значит, что во столько же раз увеличивается потребляемая мощность в первоначальный момент.

Стоит отметить, что сопротивление в холодном состоянии измерялось мультиметром на пределе 200 Ом при выходном напряжении мультиметра 0,5 В. При измерении сопротивления на пределе 2000 Ом (выходное напряжение 2 В) показания сопротивления увеличиваются более чем в полтора раза, что опять же укладывается в идею статьи.

“Горячее” сопротивление измерялось косвенным методом.

Погрешности при расчете

Во время ремонтных работ в планы владельцев помещения нередко входит замена обычных ламп накаливания на светодиодные, после чего уровень освещенности может в несколько раз снизиться.

Причиной этого может быть огромное количество факторов, в которым относятся:

  • Использование обоев, ламината, линолеума тёмных оттенков;
  • Неправильное определение цветовой температуры светодиодов;
  • Установка натяжного потолка с матовым эффектом.

Поэтому при определении освещенности необходимо учитывать коэффициенты основных поверхностей помещения – потолка, стен и пола:

  • 70% – белый цвет;
  • 50% – светлый цвет;
  • 30% – серый цвет;
  • 10% – темный цвет;
  • 0% – черный цвет.

Для этого рассчитайте общий коэффициент отражения:

· Общий К.О.= К.О. потолка+К.О.стен+К.О.пола)/3.

Как только был получен результат, его нужно умножить на ранее рассчитанный световой поток.

Принцип работы

Работает источник благодаря испусканию излучения волн благодаря электронному молекульному возбуждению и атомам, а также благодаря тепловому колебанию молекульному ядру накала. При повышении температуры тела накала повышается поступательная, колебательная и вращательная энергия заряженных частиц. В итоге вырастает поток излучения со средней фотоновой энергией. Длина излученческой волны перемещается в часть коротковолновой инфракрасной и длинноволновой видимой области. В дальнейшем будет увеличена температура тела обеспечивается энергия, которая достаточна, для того чтобы возбуждались молекулы и атомы и получалось коротковолновое видимое излучение. Поэтому главный фактор, который определяет плотность с длиной волны излучения, это температура.

Вам это будет интересно Особенности филаментных ламп

Принцип работы ламп накаливания

Основные характеристики ЛН

В лампе накаливания преобразуется электрическая энергия, переходящая через вольфрамовую спираль в световую, тепловую. Большая часть мощности, которую имеет лампа, идет на выделение тепла. При работе происходит повышение температуры нити накаливания, вызванное её сопротивлением току. Высокая температура вольфрамовой нити (2600–3000 градусов Цельсия) приводит к уменьшению срока эксплуатации прибора. Для снижения времени перегрева вольфрамовую спираль размещают в стеклянной вакуумной колбе.

Емкость более совершенной галогенной лампы наполняется инертным газом. Для измерения, определения температуры нити берется температура прибора до включения в сеть, учитывается тепловой коэффициент сопротивления вольфрама, находится отношение тока включения к рабочему.

Использование ЛН основано на их преимуществах перед другими типами светильников:

  • свет появляется сразу после включения в сеть;
  • небольшие размеры;
  • низкая стоимость;
  • экологически чистое изделие;
  • стойкость к влажности окружающей среды.

Одновременно их использование сопровождается недостатками:

  1. яркий свет, требующий в ряде случаев применения защитных очков;
  2. нагретая колба, которая может взорваться при попадании на её поверхность воды. При контакте с обнаженным участком кожи возможен ожог;
  3. при эксплуатации происходит большое потребление энергии;
  4. не подлежат ремонту;
  5. быстро заканчивается срок службы лампы из-за повреждения спирали при частом включении-выключении.

Температура — вольфрамовая нить

Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Наполнение баллонов ламп инертными газами ( например, смесью криптона и ксенона с добавлением азота) при давлении 50кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения. Однако светоотдача при этом не увеличивается, так как возникают дополнительные потери энергии из-за теплообмена между нитью и газом вследствие теплопроводности и конвекции. Для уменьшения потерь энергии за счет теплообмена и повышения светоотдачи газонаполненных ламп нить изготовляют в виде спирали, отдельные витки которой обогревают друг друга. При высокой температуре вокруг этой спирали образуется неподвижный слой газа и исключается теплообмен вследствие конвекции.

Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Наполнение баллонов ламп инертными газами ( например, смесью криптона и ксенона с добавлением азота) при давлении 50 кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения.

Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Наполнение баллонов ламп инертными газами ( например, смесью криптона и ксенона с добавлением азота) при давлении 50 кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения. Однако светоотдача при этом не увеличивается, так как возникают до полнительные потери энергии из-за тепл ( обмена между нитью и газом вследстви теплопроводности и конвекции. Дл уменьшения потерь энергии за счет тепло обмена и повышения светоотдачи газонаполненных ламп нить изготовляют в виде спирали, отдельные витки которой обогревают друг друга. При высокой температуре вокруг этой спирали образуется непод вижный слой газа и исключается теплооб мен вследствие конвекции.

Определить температуру вольфрамовой нити лампы, включенной в сеть с напряжением 380 В, если по нити идет ток 1 2 А.

Однако повышение температуры вольфрамовых нитей сверх 3000 К ведет к их быстрому разрушению. Максимум величины г я (13.21) Солнца ( оно излучает как абсолютно черное тело при температуре, равной 5800 К) приходится на видимую часть спектра.

Зависимость е / ( Р для некоторых реальных тел.| Графическое представление закона Планка EOK f (, Т.

Однако повышение температуры вольфрамовых нитей сверх 3000 К ведет к их быстрому разрушению.

Достигается это повышением температуры вольфрамовой нити, накала по сравнению с температурой нити накала обычных ламп.

Определите максимально достижимую с предлагаемым оборудованием температуру вольфрамовой нити накала лампочки.

В лампе накаливания световой поток зависит от потребляемой электрической мощности и температуры вольфрамовой нити, помещенной в стеклянную колбу, наполняемую при изготовлении инертным газом: аргоном, ксеноном, криптоном и их смесями. Это обеспечивает повышение температуры вольфрамовой нити и уменьшает ее распыление.

Регулируя реостатом R величину тока в эталонной лампочке, можно добиться исчезновения видимости части волоска ее на фоне вольфрамовой нити лампочки Lr При таком условии температура измеряемой вольфрамовой нити лампочки будет равна температуре волоска эталонной лампы.

Лампа накаливания потребляет ток, равный 0 6 А. Температура вольфрамовой нити диаметром 0 1 мм равна 2200 С.

Звуковые отражения ( импульсы) от препятствий и уровней передаются на вольфрамовую нить термофона и вызывают изменение ее температуры. Изменение температуры вольфрамовой нити приводит к изменению ее электрического сопротивления.

В лампе накаливания световой поток зависит от потребляемой электрической мощности и температуры вольфрамовой нити, помещенной в стеклянную колбу, наполняемую при изготовлении инертным газом: аргоном, ксеноном, криптоном и их смесями. Это обеспечивает повышение температуры вольфрамовой нити и уменьшает ее распыление.

Источником излучения в электрической лампе накаливания является раскаленная вольфрамовая нить. Максимум излучения вакуумной лампы накаливания при температуре вольфрамовой нити 7 2500 К находится в области Я 1 15 мкм, а газонаполненных ламп при температуре нити Г2900 К — в области Л1 0 мкм.

Блок питания для ламп 12 В

Низковольтные источники света требуют питания постоянным током напряжением 12 В. Для понижения напряжения бытовой сети до нужного значения используются специальные блоки питания.

Для питания галогенных и ламп накаливания применяют простые блоки питания (по принципу понижающего трансформатора). Для светодиодных необходимо более сложное устройство, специальный источник питания или led-драйвер. Имейте это в виду при покупке.

В зависимости от назначения светильника блоки питания разделяют на:

  • Герметичные (ip55-ip69): хороший вариант для работы во влажном или пыльном помещении (гараж, ванная комната, баня и т.п.);
  • Негерметичные (ip20- ip55): подходят для работы в помещениях с нормальных уровнем влажности;
  • С активной системой охлаждения: оснащен дополнительным вентилятором, что позволяет увеличить мощность изделия;
  • С пассивной системой охлаждения: оснащен радиатором. Работает бесшумно, но ограниченная мощность.

Для выбора блока питания необходимо знать несколько параметров.

Мощность. Рассчитывается по формуле:

где Р – суммарная мощность;

Кз – коэффициент запаса, Кз = 1,1-1,5;

Рi – мощность отдельного источника света;

n – количество источников света.

  • Выходной ток зависит от числа подключенных ламп. Он должен совпадать с требуемой силой тока для каждой лампы.
  • Выходное напряжение в данном случае равно 12 В.

Подключить лампы к блоку питания довольно просто и безопасно, так как 12 В – это безопасное для человека напряжение. Тем не менее, перед подключением внимательно изучите электрическую схему и разберитесь в маркировке блока питания (вход/выход). Проводка при такой схеме должна быть минимально возможной длины и большого сечения. Иначе лампы будут работать не на полную мощность.

Электрическая схема подключения блока питания 12 В

Формула для сопротивления

Но вернёмся к теме статьи. Проверим вывод Станислава Матросова о том, что сопротивление лампочки пропорционально корню из напряжения. Из предыдущих выводов можно вывести формулу для конкретной лампочки 40Вт 24В:

Зависимость сопротивления от напряжения, формула для лампы накаливания

Теперь проверим, как эта формула соотносится с полученными мною экспериментальным данным (см. таблицу в начале статьи). Составим такую таблицу:

1. Напря- жение, В 2. Норм. напр. 3. Сопрот., Ом 4. Норм. сопрот. 5. Корень из норм. напряж. 6. Корень из напряж. Х Корень из Const
2 0,08 3,6 0,26 0,29 4,04
4 0,17 5,7 0,40 0,41 5,72
6 0,25 7,1 0,50 0,50 7,01
8 0,33 8,2 0,58 0,58 8,09
10 0,42 9,3 0,66 0,65 9,04
12 0,50 10,1 0,72 0,71 9,91
14 0,58 10,9 0,77 0,76 10,70
16 0,67 11,6 0,82 0,82 11,44
18 0,75 12,2 0,87 0,87 12,13
20 0,83 12,9 0,91 0,91 12,79
22 0,92 13,5 0,96 0,96 13,41
24 1,00 14,1 1,00 1,00 14,01
26 1,08 14,7 1,04 1,04 14,58
28 1,17 15,2 1,08 1,08 15,13
30 1,25 15,6 1,11 1,12 15,66
32 1,33 16 1,13 1,15 16,18

Таблица требует пояснений. Чтобы была соблюдена размерность, я нормировал экспериментально заданное напряжение (столбец 2) и рассчитанное сопротивление (столбец 4).

Колонка 5 – это корень из нормированного напряжения, и видно, что значения этой колонки отлично совпадают с колонкой 4!

Но давайте вернемся в реальному сопротивлению, и рассчитаем его по приведенной выше формуле (Зависимость сопротивления от напряжения). Это – 6-я колонка. Хорошо видно, что расчет по формуле практически идеально совпадает с расчетом из экспериментальных данных!

Зависимость сопротивления от напряжения. Квадратичная зависимость.

Кто хочет проверить мои расчеты, прикладываю файл: • Файл с расчетами и графиками / Файл с расчетами и графиками к статье про лампу накаливания, xlsx, 19.51 kB, скачан: 891 раз./

Всё, учебник физики можно переписывать! 😉

Формула мощности и напряжения

Обновление статьи от января 2018. У меня на блоге появилась статья автора Станислава Матросова, который развил тему сопротивления спирали лампочки с теоретической стороны. Он вывел формулу, согласно которой:

Я решил на основе данных, полученных в статье, посчитать эту величину в Экселе. Вот что у меня получилось:

U P U^3 P^2 Const
2 1,1 8 1,21 6,61157
4 2,8 64 7,84 8,163265
6 5,04 216 25,4016 8,503401
8 7,76 512 60,2176 8,502498
10 10,8 1000 116,64 8,573388
12 14,28 1728 203,9184 8,473978
14 18,06 2744 326,1636 8,412956
16 22,08 4096 487,5264 8,401596
18 26,46 5832 700,1316 8,329863
20 31 8000 961 8,324662
22 35,86 10648 1285,94 8,280327
24 40,8 13824 1664,64 8,304498
26 46,02 17576 2117,84 8,29902
28 51,52 21952 2654,31 8,270321
30 57,6 27000 3317,76 8,138021
32 64 32768 4096 8

Действительно, константа, которая с некоторой погрешностью во всём диапазоне равна 8,2±0,2. Её размерность – “Вольт в кубе на Ватт в квадрате”.

Константа для расчета лампы накаливания = 8,2

Теперь, зная значение этой константы (8,2), можем записать формулу зависимости мощности от напряжения лампочки накаливания 40Вт 24В:

Зависимость мощности лампочки накаливания от напряжения

Характеристики

Лампы различаются друг от друга конструкцией и техническими характеристиками

Для потребителя важно знать свойства тех или иных источников света. Ознакомимся с ними подробнее

Мощность. Измеряется в Вт. Мощность говорит о количестве электричества, которое потребляет источник света. Чем она больше, тем ярче светит лампочка. Одновременно большая мощность говорит о больших расходах на электроэнергию и размере счетов за нее.

Поскольку номинальная мощность напрямую зависит от конструкции, то для сравнения разных типов ламп удобнее использовать другую характеристику – световой поток.

Световой поток. Измеряется в лм. Световой поток показывает, насколько ярко светит лампочка. Новые модели источников света (люминесцентные и светодиодные) имеют большую яркость при меньшей мощности. Именно за счет этого достигается энергосбережение.

Сравнительная характеристика мощностей самых популярных бытовых лампочек со световым потоком 1200 лм приведена в таблице.

Таким образом, при равном световом потоке мощность светодиодных ламп более чем в пять раз меньше, чем у ламп накаливания.

Светоотдача. Измеряется в лм/Вт. Светоотдача показывает световой поток в расчете на 1 Вт мощности. Также удобный параметр для сравнения разных типов осветительных приборов. Чем больше светоотдача, тем меньшая мощность обеспечивает максимальную яркость.

Коэффициент цветопередачи (Ra, CPI). Показывает, насколько искажаются реальные цвета при искусственном освещении. Обозначается цифрами от 1 до 100. Чем ниже значение коэффициента, тем сильнее искажаются оттенки. Индекс 100 означает, что цвета передаются максимально точно. Для зрения в помещении безопаснее использовать источники света с Ra не менее 80.

Цветовая температура. Измеряется в К. Определяет теплоту света, ведь разные цвета в зависимости от освещения воспринимаются глазом по-разному.

Цветовая температура

Различают несколько типов цветовых температур:

  • 2700-3200 – теплый белый;
  • 3300-4000 – нейтральный белый;
  • 4000-5000 – холодный белый;
  • 5000-6000 – дневной свет;
  • свыше 6000 – холодный дневной.

Цветовая температура заметно влияет на настроение и работоспособность человека. При выборе ламп, особенно для домашнего и рабочего использования, внимательно изучите маркировку. Помните, что теплый цвет способствуют расслаблению, а холодные – бодрости и работоспособности. Но в больших количествах холодный свет угнетает нервную и зрительную систему. Подробнее можно почитать в статье о цветовой температуре

Срок службы. Это количество часов, которое прослужит источник света. На упаковке обычно указывается срок службы при работе в идеальных условиях. В реальных он может отличаться от заявляемого производителем. Сроки службы популярных бытовых лампочек приведены в таблице.

К тому же у многих моделей источников света со временем падает яркость. Это происходит из-за физических процессов, которые делают возможным само свечение. К таким лампам относятся светодиодные, газоразрядные.

Угол рассеивания света. Это угол, на который расходится световой поток. Лампа накаливания светит во все стороны на 360⁰. Но не все виды источников света могут похвастаться тем же. Например, из-за конструктивных особенностей led  (и других типов) угол рассеивания составляет от 30⁰ до 360⁰.

Угол рассеивания света

Исходя из задачи светильника, выбирается оптимальный угол. Для точечной подсветки достаточно 30⁰, а для общего освещения лучше выбирать максимальный угол.

Коэффициент пульсации (мерцания). Характеризует равномерность освещения. Измеряется в процентах. Чем меньше коэффициент, тем ровнее световой поток, тем меньше будут уставать глаза. В идеале для дома и офиса стоит выбирать источники света с коэффициентом пульсации около 5%. Лампы с коэффициентом свыше 35% опасны для зрения.

Окончательный вывод формулы

Рассмотрим подробнее систему уравнений:

Возведем в квадрат первое уравнение и попарно перемножим их.

В левой части мы видим выражение для мощности, а так же памятуя о том, что произведение коэффициентов равно единице, окончательно перепишем:

Отсюда получим выражение для токового коэффициента:

И для резистивного коэффициента (они взаимообратны):

где Рном и Uном – это номинальные мощность и напряжение, маркированные на цоколе или на колбе лампы.

Осталось подставить эти значения коэффициентов в “РАСЩЕПЛЕННУЮ” формулу Закона Ома, и мы получим окончательные выражения для тока и сопротивления.

Домножая последнее соотношение на Ux, получим:

Чтобы не забивать себе голову этими квадратами, кубами и корнями, достаточно запомнить простую зависимость, которая вытекает из последнего соотношения . Возводя последнее соотношение в квадрат, мы получаем ясную и понятную формулу:

Для любой лампочки с вольфрамовой нитью накала отношение куба напряжения к квадрату мощности является величиной ПОСТОЯННОЙ.

Полученные соотношения показали прекрасное соответствие практическим результатам (измерениям) в широком диапазоне изменения параметров напряжения и для весьма различных типов ламп накаливания, начиная от комнатных, автомобильных и заканчивая лампочками для карманных фонариков…

Источник: ledsshop.ru

Стиль жизни - Здоровье!