Источники высших гармоник тока

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник

Снижение полного сопротивления распределительной сети

Это один из эффективных методов снижения нелинейных искажений. Кабели и сборные шины имеют полное сопротивление, которое прямо связано с длиной линий. Увеличение сечения кабелей (проводов) снижает активное сопротивление распределительной сети, но не снижает ее индуктивность. Максимальное эффективное сечение жил кабелей (проводов) составляет приблизительно 95 кв. мм. С дальнейшим увеличением сечения кабелей их индуктивность остается относительно постоянной. Очевидно, что более эффективным будет использование параллельно соединенных кабелей (проводов). При возможности использования децентрализованной системы бесперебойного питания следует рассмотреть разделение всего инсталлируемого оборудования (т.е. устройств, входящих в состав защищаемой нагрузки) на секции, каждая из которых будет запитана от отдельного источника бесперебойного питания (ИБП).

Следует помнить о том, что во время профилактических, ремонтных и т.п. работ системы бесперебойного питания должны и могут быть переключены в режим обхода (Bypass). При этом возможно возрастание уровня искажений, т.к. нелинейная нагрузка напрямую будет подключена к первичному источнику переменного напряжения (генератор, трансформатор подстанции и т. п.). Форма напряжения сетевого электропитания часто бывает искажена из-за других нагрузок, не относящихся к критическим, но имеющих характеристики, подобные компьютерному и офисному оборудованию. Искажения формы напряжения электропитания, сгенерированные другим оборудованием, добавятся к искажениям от компьютерной нагрузки, которая была переключена на питание непосредственно от сети (на время профилактики или ремонта ИБП), создавая, таким образом, более высокие уровни искажений.

Литература

  1. ГОСТ 13109 — 97. Нормы качества электрической энергии в системах электроснабжения общего назначения.
  2. Капустин В.М., Лопухин А.А. Компьютеры и трехфазная электрическая сеть // Современные технологии автоматизации — СТА, №2, 1997, стр. 104-108.
  3. Dugan R.C., McGranaghan M.F., Beaty H.W. Electrical Power Systems Quality. McGraw-Hill, 1996. — 265 стр.
  4. Fiorina J.N. Inverters and Harmonics // Cahier Technique Merlin Gerin, no 159. — 19 стр.
  5. Yacamini R. Power System Harmonics. Part 3 — Problems caused by distorted supplies // Power Engineering Jounal, Oct., 1995, стр. 233-238.
  6. Harmonic Disturbances in Networks and Their Treatment // Cahier Technique Schneider Electric, no 152. — 25 стр.
  7. Forrester W. Networking in Harmony // Electrical Contractor, Nov. / Dec., 1996, стр. 38-39.

Защита реакторов

Основная проблема в фильтрах гармоник связана с защитой фильтров от перегрузок по току. Фильтры, обеспечивающие требуемую частоту настройки, должны защищаться как от коротких замыканий, так и от перегрузок.

Советуем изучить — Испытание кабельных линий повышенным напряжением

Последние могут возникать по следующим причинам:

  1. появление в энергосистеме или смежной энергосистеме новых источников гармоник;
  2. повышение уровней гармоник напряжения в месте подключения фильтра;
  3. ненормальные режимы нелинейных нагрузок;
  4. изменение точки настройки фильтра из-за срабатывания предохранителей в конденсаторной батарее;
  5. перенапряжения

Наилучшим способом защиты от перегрузок является установка тепловых реле в каждой фазе фильтра. Такие реле реагируют на действующее значение тока, а время их срабатывания зависит от температуры окружающей среды. Тепловое реле настраивается на срабатывание при таких значениях тока, при которых возникает опасность повреждения фильтра. Обеспечиваемое при этом качество защиты недостижимо при использовании предохранителей и существенно лучше, чем при использовании обычных реле. Выход теплового реле должен быть подключен к цепи отключения встроенных вакуумных выключателей или к выключателю, установленному на линии, идущей к фильтру.

В дополнение к защите от перегрузок, реакторы должны иметь защиту от междуфазных коротких замыканий и замыканий на землю. Защита от междуфазных коротких замыканий обеспечивается путем установки токоограничивающих предохранителей на шинах вводного разъединителя или реле со стороны сети. При использовании реле их выходы должны быть подключены к цепи отключения вводного выключателя или вышестоящего коммутационного аппарата, поскольку большинство коммутационных аппаратов, используемых с конденсаторными батареями фильтров не рассчитаны на отключение токов КЗ.

В случае реакторов со стальным сердечником (что типично для фильтров закрытого исполнения) следует рассмотреть возможность установки токоограничивающих предохранителей на шинах вводного разъединителя даже при наличии вводного выключателя или выключателя, встроенного в корпус фильтра. В данном случае предметом особого внимания является динамическая стойкость обмотки фильтра. При коротком замыкании со стороны нагрузки напряжение сети оказывается полностью приложенным к фильтру, что приводит к его насыщению. Соответственно, его реактивное сопротивление становится таким же, как у воздушного фильтра с аналогичными обмоточными данными. Если возможность насыщения фильтра при токах КЗ не учтена при его проектировании (обычно это не делается из-за цены), следует предусмотреть токоограничивающие предохранители.

Форма питающего напряжения

Повышенное значение коэффициента амплитуды указывает на то, что имеется большой пик потребляемого тока за половину периода сетевой частоты. Чем выше пиковое значение тока и меньше его длительность за полупериод напряжения сети, тем больше его искажение. Коэффициент амплитуды тока данной нагрузки изменяется в зависимости от характера источника электропитания, в то время как способность самого источника к обеспечению нагрузок с большим коэффициентом амплитуды определяется его полным внутренним сопротивлением и его способностью обеспечивать пиковые значения потребляемого от него тока.

Для многих устройств, выполняющих функции источников электропитания, такая способность может быть достигнута только путем завышения номинальных параметров этого оборудования. В частности, в современных генераторных установках переменного тока сверхпереходное реактивное сопротивление составляет приблизительно 15%, что производит достаточно неблагоприятное воздействие на форму напряжения, если не используются специальные обмотки или мощность генератора не будет выбрана заведомо завышенной.

Современные источники бесперебойного питания (ИБП) способны контролировать форму напряжения на каждом полупериоде синусоиды. В настоящее время в подавляющем большинстве систем бесперебойного питания практически любой мощности используются инверторы на биполярных транзисторах с изолированным затвором (IGBT) при высокочастотном широтно-импульсном методе их управления. Такие системы обладают способностью питания нагрузок с высокими коэффициентами амплитуды тока (3 и выше) за счет переключений на высокой частоте и корректировке формы напряжения на каждом полупериоде. Эта способность отдавать ток с высокими пиковыми значениями может приводить к тому, что форма напряжения на выходе ИБП с двойным преобразованием энергии заметно лучше, чем у промышленной сети на входе системы.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи

Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%

Советуем изучить — Классификация и основные параметры измерительных органов задающих и программных устройств

Колебательный контур, резонанс

Колебательный контур, электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Если в некоторый момент времени зарядить конденсатор до напряжения V, то энергия, сосредоточенная в электрическом поле конденсатора, равна

Ес=CV2/2,

где С — ёмкость конденсатора.

При разрядке конденсатора в катушке потечёт токI, который будет возрастать до тех пор, пока конденсатор полностью не разрядится. В этот момент электрическая энергияКолебательного контураEc= 0, амагнитная,сосредоточенная в катушке,

EL=LI2/2,

гдеL- индуктивность катушки,I- максимальное значение тока.

Затем ток в катушке начинает падать, а напряжение на конденсаторе возрастать по абсолютной величине, но с противоположным знаком. Спустя некоторое время ток через индуктивность прекратится, а конденсатор зарядится до напряжения -V. ЭнергияКолебательного контуравновь сосредоточится в заряженном конденсаторе. Далее процесс повторяется, но с противоположным направлением тока. Напряжение на обкладках конденсатора меняется по законуV=Vcos wt, аток в катушке индуктивностиI=Isin wt, т. е. вКолебательном контуревозбуждаются собственные гармонические колебания напряжения и тока с частотой w= 2 p/T, гдеT- период собственных колебаний, равныйT= 2p. ВКолебательном контуредважды за период происходит перекачка энергии из электрического поля конденсатора вмагнитноеполе катушки индуктивности и обратно. В реальныхКолебательных контурах, часть энергии теряется. Она тратится на нагрев проводов катушки, обладающих активным сопротивлением, на излучение электромагнитных волн в окружающее пространство и потери в диэлектриках,что приводит к затуханию колебаний. Амплитуда колебаний постепенно уменьшается, так что напряжение на обкладках конденсатора меняется уже по закону:V=Ve-dtcoswt,где коэффициент d =R/2L -показатель (коэффициент) затухания, а w = — частота затухающих колебаний. Т. о., потери приводят к изменению не только амплитуды колебаний, но и их периодаТ = 2p/w.КачествоКолебательного контураобычно характеризуют его добротностью . ВеличинаQ определяет число колебаний, которое совершитКолебательный контурпосле однократной зарядки его конденсатора, прежде чем амплитуда колебаний уменьшится вераз (е- основание натуральных логарифмов).

Алгоритмы управления активным фильтром гармоник

Основным алгоритмом анализа гармоник и выделения сигнала ошибки для управления фильтром является разложение общего сигнала на высшие гармонические составляющие c использованием быстрого преобразования Фурье и выделение из общего сигнала сигналов основной частоты и высших гармоник.

Анализ входящих аналоговых сигналов

Получение дискретизации сигнала осуществляется встроенным в микроконтроллер АЦП. Чтобы взять дискретизацию за 1 период сигнала с частотой 50Гц, через равные промежутки времени АЦП со всех каналов синхронно снимает выборки (условно, т.к. время взятие одной выборки пренебрежимо мало по отношению к интервалу между точками дискретизации). В качестве триггера АЦП выступает аппаратный таймер контроллера.

Расчет спектра сигнала

Спектр сигнала получается выполнением прямого Дискретного Преобразование Фурье (ДПФ). Для вычисления спектра на микроконтроллере в реальном времени, используется Быстрое Преобразование Фурье БПФ.

Алгоритм быстрого вычисления дискретного преобразования Фурье (ДПФ) позволяет вычислять спектр сигнала за существенно меньшее количество операций. Сложность БПФ , против  у ДПФ.

Когда в дискретизации нет целого числа периодов синусоидального сигнала, разрывы, которые образуются в конечных точках выборки, приводят к расширению спектра анализируемого сигнала вследствие появления дополнительных гармоник.

В случаях когда полученная дискретизация содержит не целое количество периодов, краевые точки не будут совпадать. В этом случае спектр полученный применением БПФ, не будет верным, т. к. из-за изменения временного интервала основные гармоники перераспределяются по высшим частотам. Это влечет за собой расчет гармоник, которых на самом деле не содержится в сигнале и которые могут значительно превышать частоту Найквиста.

Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если наивысшая частота полезного сигнала равна половине или меньше частоты дискретизации. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот, алиасинг).

Это выглядит будто амплитуда с одних гармоник растекается по другим. Для минимизации эффекта растекания спектра применяется техника оконного преобразования.

Так как в случае изменения частоты сети период сигнала так же незначительно изменяется необходимо изменение размерности дискретизации, для этого применяется интерполяция сигнала. Для уточнения расчета спектра сигнала, снятую с АЦП дискретизацию необходимо интерполировать по количеству точек и по времени для передачи в расчет ДПФ, так как расчет ДПФ выполняется только на дискретизациях размерности кратной 2.

Так же с помощью интерполяции можно эффективно решать проблему растекания спектра, при условии, что временной интервал дискретизации близок к измеряемому периоду.

Блок управления выполняет следующие операции:

  • производит быстрое преобразование Фурье (FFT).
  • производит умножение полученных гармоник на задаваемый коэффициент подавления, полученный результат инвертируется;
  • над нормализованными и инвертированными данными производится обратное преобразование Фурье для получения требуемого тока компенсации АФГ;
  • требуемый ток АФГ интерполируется под частоту ШИМ;
  • интерполируемый под частоту ШИМ требуемый ток преобразуется в задание ШИМ и заносится в генератор ШИМ для формирования сигнала управления силовым модулем. В общем виде задание ШИМ представляется по формуле 1: ,                                                (1) где С — коэффициент зависящий от напряжения сети и напряжения на накопителе;y(t) — результат обратного БПФ; — управление активным выпрямителем; — управление генерацией/потреблением реактивной мощности; power — коэффициент обратной связи АФГ.

Высшие гармоники в электросетях

Постоянный рост количества нелинейных потребителей в наших электрических сетях приводит к повышенному “загрязнению электросетей”. Обратное воздействие на сеть является для энергетики такой же проблемой, как загрязнение воды и воздуха для экологии.

В идеальном случае на выходных клеммах генераторы выдается чисто синусоидальный ток. Синусоидальное напряжение рассматривается как идеальная форма переменного напряжения, любое отклонение от него считается сетевой помехой.

Рис.1 Обратные воздействия на сеть, вызванные преобразователями частоты.

Все больше потребителей получают из сети несинусоидальный ток. Быстрое преобразование Фурье (БПФ) этих “загрязненных” токовых волн показывает наличие широкого спектра колебаний с гармониками различного порядка, которые обычно называют высшими гармониками.

Рис.2 Анализ высших гармоник (Быстрое преобразование Фурье)

Высшие гармоники наносят вред электрическим сетям, они опасны для подключенных потребителей так же, как загрязненная вода вредна для организма человека. Они приводят к перегрузкам, снижают срок службы и, при определенных условиях могут вызывать преждевременный выход из строя электрических и электронных потребителей.

Нагрузка высшими гармониками является основной причиной невидимых проблем с качеством напряжения, приводящих к огромным расходам на ремонт или покупку нового оборудования взамен поврежденного. Недопустимо высокое обратное воздействие на сеть и вызванное им низкое качество напряжения могут, таким образом, вызвать сбои производственного процесса вплоть до остановки производства.

Высшие гармоники – это токи или напряжения, частота которых превышает основное колебание 50/60 Гц и кратна этой частоте основного колебания. Высшие гармоники тока не вносят вклад в активную мощность, но оказывают только термическую нагрузку на сеть. Поскольку токи высших гармоник протекают в дополнение к “активным” синусоидальным колебаниям, они обеспечивают электрические потери в рамках электроустановки, что может привести к термической перегрузке. Дополнительные потери в потребителе электроэнергии приводят, кроме того к нагреву и перегреву, а также к сокращению срока службы оборудования.

Оценка нагрузки высшими гармониками, как правило, выполняется в точке подключения (или передачи в сеть электроснабжения общего пользования) соответствующей организации по энергоснабжению. Все чаще эти точки называют Point of Common Coupling (PCC). При определенных условиях может потребоваться определение и анализ нагрузки высшими гармониками со стороны определенного оборудования или групп оборудования для выявления внутренних проблем с качеством электрической сети и их причин, их вызывающих.

Рис.3 Поврежденные высшими гармониками конденсаторы

Для оценки нагрузки высшими гармониками используются следующие параметры:

Коэффициент суммарных гармонических искажений (THD)

Коэффициент суммарных гармонических искажений (THD) или общее гармоническое искажение позволяет квалифицировать размер долей, возникающих в результате нелинейного искажения электрического сигнала. Это отношение эффективного значения высших гармоник к эффективному значению первой гармоники. Значение THD используется в сетях низкого, среднего и высокого напряжения. Обычно для искажения тока используется коэффициент THDi , а для искажения напряжения – коэффициент THDu.

Коэффициент искажения для напряжения

  • M = порядковый номер высшей гармоники
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)
  • Основная гармоника fund соответствует n = 1

Коэффициент искажения для тока

  • M = порядковый номер высшей гармоники
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)
  • Основная гармоника fund соответствует n = 1

Общее искажение тока (TDD)

Особенно в Северной Америке термин TDD регулярно используется в связи с проблемами, вызванными высшими гармониками. Это величина, связанная с THDi, но в этом случае определяется отношение доли высших гармоник к доле основных колебаний номинального значения тока. Таким образом, TDD определяет отношение между высшими гармониками тока (аналогично THDi) и возникающим на протяжении определенного периода эффективным значением тока при полной нагрузке. Обычно период равен 15 или 30 минутам.

TDD (I)

  • TDD определяет отношение между высшими гармониками тока (THDi) эффективным значением
  • тока при полной нагрузке.
  • IL = полный ток нагрузки
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)

Анализ гармоник (тока и напряжения) могут проводить практически все анализаторы ПКЭ Janitza, за исключением UMG 96L.

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Измерение качества электрической энергии

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Подробнее…

Гармоники кратные 3-м

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°. Подробнее…

Источник: ledsshop.ru

Стиль жизни - Здоровье!