Источник тока для незаземленной нагрузки

Печатная плата

Основной проблемой печатных плат для реализации описанной схемы стало сопротивление токопроводящих дорожек. Включаясь последовательно с резисторами RS1, RS2 и RS3, дорожки становятся причиной дополнительной погрешности усиления. При разработке передатчика с большим выходным током или при использовании резисторов с меньшими номинальными сопротивлениями влияние паразитных сопротивлений проводящих дорожек на точность системы становится еще заметнее.

В схеме печатной платы, показанной на рисунке 9, используют так называемые зонды Кельвина для подключения резисторов ко входам операционных усилителей. Зонд Кельвина, или четырехпроводной метод измерения, позволяет отобрать для контроля только падение напряжения на соответствующем резисторе и не учитывать падение напряжения на проводящих дорожках.

Рис. 9. Печатная плата

Для правильной работы второй ступени преобразовательного каскада необходимо, чтобы на резисторы RS2 и RS3 подавалось одинаковое напряжение. По возможности, их располагают как можно ближе друг к другу.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Рис. 2. Механическую энергию в электрическую можно преобразовать с помощью электрофорной машины

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Рис. 3. Генератор – источник тока для велосипеда

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Рис. 4. Бытовой электрогенератор с бензиновым двигателем

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Низкоомное заземление нейтрали

При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.

Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.

Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты.

Доверьте обслуживание профессиональным электрикам

Сегодняшние дома и офисы, оснащенные множеством бытовых приборов и оргтехники, предъявляют повышенные требования к электрическим системам. Учитывая сильную зависимость от их работы, жители города осознают необходимость качественных услуг по монтажу и профессиональному обслуживанию электросистем. Электромонтажные работы в доме — это сфера, в которой нельзя доверять любителям. Обращение к непрофессионалам принесет больше вреда, чем пользы, влечет серьезные опасности, дополнительные расходы. Если возникла потребность в монтаже электрической системы с нуля или ее ремонте, предлагаем жителям Нижнего Новгорода обратиться в нашу фирму. Вызвать квалифицированного электрика на дом можно в любой подходящий для заказчика момент. Расценки на сопоставимы с оплатой работ частного мастера, найденного по объявлению. При практически одинаковых ценах уровень нашего профессионализма, надежности и безопасности обслуживания значительно выше, чем у конкурентов.

Измерение параметров

Передаточная функция

Напряжение на входе передатчика изменялось от 0 до 2 В. Измеренная зависимость тока нагрузки ILOAD от входного напряжения VIN показана на рисунке 10.

Рис. 10. Зависимость тока нагрузки ILOAD от входного напряжения VIN

Для оценки погрешностей преобразователя на всем диапазоне измерений были рассчитаны отклонения реального тока нагрузки и выходного тока первой ступени от эталонных значений. В качестве эталонных приняты величины, полученные по результатам расчетов. Расчет погрешностей осуществлялся по формуле 10.

Зависимости погрешностей каждой ступени от входного напряжения показаны рисунках 11 и 12. Результаты расчета приведены в таблице 5.

Рис. 11. Зависимость погрешности выходного тока от входного сигнала

Рис. 12. Зависимость погрешности в первой ступени от входного сигнала

Таблица 5. Результаты расчета по измеренным данным

ПараметрПервая ступеньВторая ступень
Смещение, нА 24 112
Полный диапазон, мА 0,9998 100,0165
Абсолютная погрешность смещения, мкА 0,2 16,5
Погрешность смещения, % 0,02 0,0165

Переходные процессы

На рисунке 13 показана реакция схемы на подачу на вход преобразователя нарастающего напряжения. Подавались треугольные импульсы напряжения амплитудой 2 В и частотой 50 Гц. На рисунке запечатлен снимок с экрана осциллографа. Канал 1 отражает величину входного напряжения, канал 4 показывает значение выходного тока через нагрузочный резистор.

Рис. 13. Отклик на нарастающий входной сигнал

Для того чтобы определить время перехода в установившийся режим и увидеть форму выходного сигнала в момент резкого изменения напряжения на входе, на преобразователь подавались прямоугольные импульсы амплитудой 2 В и частотой 1 кГц. На рисунке 14 запечатлен снимок с экрана осциллографа. Канал 1 отображает величину входного напряжения, канал 2 фиксирует значение выходного тока через нагрузочный резистор.

Рис. 14. Отклик на прямоугольный входной сигнал

Выполнена проверка устойчивости схемы при низком уровне входного сигнала. Подавались прямоугольные импульсы напряжения амплитудой 500 мВ, частотой 1 кГц. На рисунке 15 представлены результаты осциллографирования:

Рис. 15. Реакция схемы на низкий уровень сигнала

  • канал 1 – входное напряжение;
  • канал 2 – напряжение на выходе операционного усилителя второй ступени;
  • канал 3 – напряжение на выходе операционного усилителя первой ступени;
  • канал 4 – выходной ток преобразователя.

Схема быстро переходит в новый установившийся режим работы без пульсаций и перерегулирования с допустимым уровнем демпфирования. 

Выходное напряжение

Выходное напряжение передатчика зависит от напряжения источника питания VCC, падения напряжения на резисторе RS3VRS3 и напряжения насыщения p-канального MOSFET-транзистора.

Для фиксирования максимального выходного напряжения был проведен специальный эксперимент. На вход преобразователя подали такое напряжение, чтобы выходной ток через нагрузку составил ровно 100 мА. В качестве нагрузки использовали магазин высокоточных резисторов. Сопротивление нагрузки увеличивалось до тех пор, пока выходной ток не начал уменьшаться. Таким образом мы определили максимальное допустимое сопротивление нагрузки, равное 45,08 Ом. Максимальное выходное напряжение можно определить по закону Ома (формула 13):

$$V_{COMP}=I_{Load}times R_{Load}=100:мАtimes 45.08:Ом=4.508:Вqquad{mathrm{(}}{13}{mathrm{)}}$$

Итоги измерений

Результаты измерений собраны в таблице 6.

Таблица 6. Обобщенные результаты измерений

ПараметрДопустимое значениеИзмеренные значения
Погрешность смещения, % ≤ 0,025 0,001
Погрешность усиления, % ≤ 0,1 0,0165
КПД, % ≥ 98,5 98,96
Максимальное выходное напряжение, В ≥ 4,5 4,508

Основы работы источника тока с двумя операционными усилителями

Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.

Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice

Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.

Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).

В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.

Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:

Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения

Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1

Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.

(V_{вых,U1}approx left(R_{нагр}+R1right)I_{вых})

Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.

Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.

Источники электрической энергии. Внешняя характеристика

В цепях переменного тока, также как в цепях постоянного, должны действовать источники электрической энергии. Отличие этих источников заключается лишь в том, что создаваемые ими ЭДС или токи являются синусоидальными функциями времени.

Источники делятся на идеальные и реальные. У идеальных источников отсутствует внутреннее сопротивление или проводимость. Создаваемые ими ЭДС или ток определяются только параметрами источника. В электрической цепи с идеальными источниками величина тока через источник ЭДС или напряжение на источнике тока определяются нагрузкой.

На электрических схемах они изображаются точно также как источники постоянного тока, но стрелки в условном обозначении указывают направление принятое за положительное.

Реальные источники электрической энергии имеют внутреннее сопротивление Z или проводимость Y (рис. 1). Однако на переменном токе эти величины в общем случае являются комплексными.

Также как на постоянном токе, реальный источник может быть представлен двумя эквивалентными схемами с источником ЭДС или с источником тока. Внутреннее сопротивление, проводимость и параметры источников связаны между собой отношениями

Y = 1/Z ; J = E/Z ; E = J/Y, (1)

формально идентичными соответствующим выражениям для источников постоянного тока. ЭДС и ток внутренних источников соответствуют напряжению на выходе в режиме холостого хода и току в режиме короткого замыкания.

Для источников переменного тока невозможно построить вольтамперную характеристику. Ее роль играет внешняя характеристика, т.е зависимость действующего значения напряжения на выходе источника от величины действующего значения тока в нагрузке, при постоянном значении угла сдвига фаз в нагрузке jн.

Рассмотрим электрическую цепь, состоящую из реального источника и нагрузки общего вида (рис. 2). Ток в нагрузке по закону Ома можно определить из выражения

. (2)

Отсюда, падение напряжения в нагрузке

, (3)

где — комплексное относительное сопротивление нагрузки.

Падение напряжения в нагрузке можно представить в относительных единицах, если выбрать в качестве базовой величины ЭДС источника. Тогда комплексное относительное напряжение в нагрузке из выражения (3) будет —

. (4)

Ток в цепи также можно представить в относительных единицах, если в качестве базовой величины выбрать ток короткого замыкания источника Iкз=E/Zs . Отсюда комплексный относительный ток —

. (5)

Модуль комплексного относительного тока или просто относительный ток можно получить, определив модуль знаменателя выражения (5) из выражения для комплексного относительного сопротивления, в виде

. (6)

Из выражения (2) с учетом (6) относительное напряжение в нагрузке будет

. (7)

Выражения (6) и (7) позволяют построить внешнюю характеристику источника электрической энергии в относительных единицах, если в них принять в качестве переменной модуль комплексного относительного сопротивления нагрузки z , при условии постоянства его аргумента d .

Внешние характеристики для относительного сопротивления нагрузки, изменяющегося в пределах 0

Для относительного тока i условие i > 1.0 сводится к условию , а для относительного напряжения u — к условию — . Отсюда для тока и напряжения получим соответственно условия

и (8)
. (9)

Так как 0 p /2, если же это условие выполнено, то всегда найдутся такие значения z , при которых эти выражения будут справедливыми. Это означает, что внешняя характеристика будет иметь участки, на которых напряжение в нагрузке превышает ЭДС источника и ток в нагрузке превышает ток короткого замыкания.

Аргумент комплексного относительного сопротивления d представляет разность j н-j s Но т.к. обе величины по абсолютному значению меньше p /2, то условие |d | > p /2 может быть выполнено только, если реактивные составляющие комплексных сопротивлений нагрузки и источника имеют противоположные знаки.

Таким образом, из выражений (8) и (9) можно определить диапазоны относительных сопротивлений, при которых относительный ток и напряжение будут больше единицы в виде

Аналоги и варианты

Выбор компонентов для схемы, описанной в данной статье, основан на необходимости достичь желаемых технических характеристик, определенных в первом разделе статьи. Выбор стабилизированного прерываниями усилителя OPA2333 устраняет большинство погрешностей, свойственных операционным усилителям. Тем не менее, еще более высокая точность работы прибора может быть достигнута за счет более точных резисторов RS1, RS2 и RS3. Помимо этого, хотя OPA2333 и обладает практически нулевыми показателями температурного дрейфа, работа схемы за пределами допустимого диапазона температур -40…125°С может способствовать значительному изменению сопротивлений используемых резисторов. Поэтому если планируется использование преобразователя в широком диапазоне температур, рекомендуется применять все компоненты с низкими температурными коэффициентами.

Для обеспечения более высокого выходного напряжения, а следовательно — и большего допустимого сопротивления нагрузки, необходимо увеличивать напряжение источника питания. Поскольку максимальное напряжение питания OPA2333 составляет 5,5 В, то более высокие значения напряжения исключают OPA2333 из списка подходящих компонентов. Требуется подобрать операционный усилитель с более высоким максимальным напряжением питания. Существуют усилители, которые имеют большую полосу пропускания или меньшие значения тока покоя чем OPA2333. В таблице 7 приведен список операционных усилителей, которые могут подойти для использования в описанной схеме.

Таблица 7. Варианты операционных усилителей

НаименованиеНаибольшее напряжение питания, ВНаибольшее напряжение смещения, мкВДрейф напряжения смещения, мкВ/°СПолоса пропускания, МГцТок покоя, мкА
OPA2333 5,5 10 0,05 0,35 34
OPA2335 5,5 5 0,05 2 700
OPA2320 5,5 150 5 20 1600
OPA2735 12 5 0,05 1,5 1500
OPA2188 36 25 0,085 1 950

При проектировании устройств с более высоким напряжением питания или большим выходным током необходимо убедиться, что транзисторы и другие компоненты не подвержены перегрузкам или перенапряжениям.

Такие изделия как XTR110 и XTR111 совместно с описанным преобразователем напряжения в ток могут использоваться при разработке промышленных передатчиков токовой петли 4…20 мА или других диапазонов. Эти изделия оснащены регуляторами напряжения, флагами ошибок и другими функциями, которые помогают создавать надежные модули формирователей сигнала токовой петли.

Что это такое

Переносное или портативное заземление (ПЗ или ЗП) – это специальное защитное устройство, которое необходимо для подавления резко возникающих токовых зарядов в контактной линии. Его особенность в том, что такая «земля» не требует подключения к проводу при помощи стационарных клемм, и в основном используется электриками на выходе. Нужно отметить, то это необходимый прибор при работе на воздушных сетях электропередач, т. к. даже небольшой заряд может стать причиной травмы или даже летального исхода.

Фото – ЗПЛ-1 с зажимом прищепкой

Конструкция переносного заземления для ВЛ-2 (воздушных линий):

Контакт, проводящий ток;
Контактные клеммы;
Изоляторы напряжения. При этом количество изолированных контактов варьируется в зависимости от типа и назначения переноски.

Также нужно отметить, что переносные заземления часто классифицируются по типу подключения. Сейчас в продаже есть бесштанговые, штанговые (ЗПЛ-Техношанс-15-03) и комбинированные (ЗПМЗ). Первый тип отличается тем, что ток проводит кабель, а крепление к проводам производится контактными струбцинами. В качестве изолятора выступает гибкий провод. Модель со штангами подключается к токоведущим проводам несколькими способами:

Наконечниками;
Струбцинами;
Фазными клеммами.

Это очень удобно, ведь можно выбрать нужный тип вариант подсоединения в зависимости от типа выполняемых задач. В качестве материала для изолирующих стволов используется сильный диэлектрик, который может подавлять даже сильные внезапные скачки напряжения.

Фото – специальное ПЗ штанговое

Комбинированный прибор представляет собой укрепленный вариант штанговых заземлителей. Это устройство объединяет в себе прочность штанг и диэлектрических металлических колец. В нем есть как гибкие контакты, так и более жесткие, представленные в виде наконечников.

Требования к переносным заземлениям варьируются в зависимости от того, в какой сети они применяются. Сейчас производятся однофазное и трехфазное переносное подстанционное заземление. 1-фазное приспособление применяется на мощных предприятиях, где персонал вынужден трудиться при напряжении свыше 100 кВт. В этом случае, фазы расположены дальше, чем в трехфазной сети, поэтому расстояние между ними большее. Трехфазные модели применяются при более высоких напряжениях.

Фото – заземление гибкое

Область использования переносных заземлений:

Ремонт различных электроустановок;
Демонтаж проводов, опор или разводка ЛЭП (здесь необходимы модели с вытяжными штангами типа ПЗРУ-1М как на фото);

Фото – изоляция ЛЭП

Предохранение электрика во время ремонта электрических машин (станков, датчиков и прочего оборудования);
Контроль ВЛИ и приборов с наличием специальных зажимов (применяется ПЗУ-1, ПЗТ или ПЗРУ-1);
С целью обеспечения защиты персонала на ЛЭП и СИП проводов (ПК 1-10);
Заземление пожарных столбов (ЗПС-1 и ШЗП-10Н РУ-1);

Фото – ЗПС-1

Ремонт электроснабжающих сетей на газозаправочных станциях и прочих пожарных предприятий (ЗПМ-1М). Иногда также используется комплект переносных заземлений КШЗ-10Д или КШЗУ 0,4-10 если требуется комплексная проверка линий электропередач.

Нужно отметить, что к этим защитным приборам выдвигаются довольно серьезные требования. Самое главное – прочность. Заземление должно переносить даже самые сильные (по контрольным замерам модели) динамические скачки напряжения вести. Если зажимы треснут во время работы, то прибор станет неисправным. Независимо от типа, зажим «земли» обязан выдерживать самые высокие температуры, т. е. выполняться из тугоплавкого материала.

Фото – голый провод ЗП

При этом нужно соблюдать определенные правила при работе. Например, линейное напряжение не должно превышать данные, которые содержит паспорт и сертификат качества устройства. Перед началом работы обязательно нужно проводить ряд испытаний на пробивку зарядом тока контактов и нагревание клемм. Также желательно зрительно оценить работоспособность приборов. Если у распределительных контактов видны следы припоя (они соединяются сваркой и прессованием), то прибор использовать нельзя. Иногда непосредственно клеммы «земли» соединяются с контактами ЛЭП при помощи сварки или пайки, в таком случае нужно обязательно использовать дополнительные зажимы.

Любое заземление состоит из гибких проводников без изоляции

Это очень важно, ведь при высоких температурах защитное покрытие может расплавиться и стать причиной возгорания

Видео: снятие переносного заземления

Общие сведения

Упорядоченное движение электрических зарядов в физическом теле называют током. Значит, для того чтобы он существовал необходима какая-то сила, воздействующая на обладающие энергией элементарные частицы. Причём её действие должно быть постоянной для поддержания необходимого электротока в установленный промежуток времени. Именно для этого и используют источники электрического тока, приборы, которые умеют генерировать электричество.

Создание первого источника датируется 1800 годом, когда физик Вольт представил сообществу прибор, названный им «электродвижущий аппарат». Позже он получил официальное название «вольтов столб». Принцип работы этого устройства заключался в растворении цинковой пластины, соединённой с медным проводником. Физик придал приспособлению вертикальную форму и разместил химические вещества поочерёдно. В итоге получился как бы слоёный пирог. Между пластинами цинка и меди заливался электролит.

Полуметровый столб Вольта подключался к замкнутой цепи, причём медный вывод считался плюсовым, а цинковый минусовым. Таким образом, Вольт, не поняв действительной причины возникновения тока, практически пришёл к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую.

Несмотря на то что Вольт так и не смог понять действительную причину появления тока его прибор стал популярен среди учёных исследовавших электричество. Как выяснилось впоследствии «вольтов столб» стал прототипом гальванической батареи. В 1830 году русский учёный Петров на базе изобретения француза создал источник, выдающий 1,7 киловольта. Длина его установки составляла 12 метров, а мощность 85 ватт.

Сегодня под источником тока понимают генератор способный преобразовывать различного рода матерею в электричество, то есть создавать электромагнитное поле.

Следует отметить, что в электротехнике источники разделяют на два вида: тока и напряжения.

Отличия их в следующем:

  • генератор тока выдаёт постоянный поток электронов в независимости от напряжения и, по сути, является конденсатором с бесконечной ёмкостью;
  • источник напряжения обеспечивает постоянную разность потенциалов и похож на аккумулятор.

Но на самом деле эти различия чисто теоретические, на практике же отличия не существуют. Это связано с тем, что изготовить идеальный прибор невозможно. То есть такой, на который не влияет нагрузка приёмника, а внутреннее сопротивление нулевое.

Что такое наведенное напряжение и чем оно опасно?

Возникновение наводки на воздушных линиях электропередачи и в электроустановках, связанных с ними, представляет опасность не меньшую, чем присутствие рабочего напряжения на них. Также данное явление возникает в бытовых условиях в сети 220 В, поэтому необходимо понимать природу возникновения и меры защиты от наведенного напряжения, о чем мы и поговорим далее.

В чем опасность явления?

Наведенное напряжение можно считать более опасным и коварным в отличие от рабочего в силу того, что на него никак не реагирует защитная аппаратура. Например, при попадании под него ремонтного персонала, работник будет находиться под опасным воздействием до момента освобождения от его влияния. А вот если на человека воздействует рабочее напряжение, то срабатывает защита и происходит автоматическое отключение, вследствие короткого замыкания.

Кстати, о коротком замыкании (КЗ). При КЗ в рабочей линии происходит наводка на отключенную ВЛ и многократное превышение тока, что, естественно, отражается на персонале, занятом ремонтом на отключенной ВЛ. Последствия могут быть весьма плачевными – от сильных ожогов, до протекания тока по жизненно важным органам с их поражением, вплоть до летального исхода. Поэтому не нужно пренебрегать правилами безопасности при проведении работ на отключенных ВЛ.

Что же делать в случае попадания человека под наведенное напряжение? Как избавиться от его воздействия? Необходимо устранить протекание тока через тело человека. Для этого понадобится соединить опасную часть электроустановки с «землей», набросив на нее заземление.

Принцип работы источника тока на ОУ

Принцип работы аналогового источника тока: когда нагрузка постоянного тока находится под напряжением, на силовом резисторе 1 Ом (R4) создается небольшое напряжение, которое подается на инвертирующий вход (контакт 2) IC1. Это положительное напряжение инвертируется IC1, уменьшая напряжение на выходе (вывод 1), что дополнительно снижает напряжение на R4 через T1. Это стабилизирует выходное напряжение до значения, которое окажется на его неинвертирующем входе (вывод 3). Любое изменение тока через R4 вызывает изменение напряжения на выводе 2, которое точно компенсируется отрицательной обратной связью. В результате через силовой резистор и подключенную нагрузку протекает постоянный ток.

Опорное напряжение составляет около 2,5 В, использовалась TL431A (VR1) в качестве источника опорного напряжения, потому что микросхема была под рукой. Также можно попробовать другие, более дешевые идеи создания постоянного опорного напряжения. Потенциометр 10K (TM1) предназначен для точной настройки тока, и, следовательно, 10-оборотный точный многооборотный подстроечный резистор был бы лучше, чем обычный, который использовался в данном случае.

Далее была сделана быстрая тестовая версия на макетной плате

Стоит обратить внимание на то, что эту схему довольно легко заставить возбуждаться, а это нежелательно и может затруднить точную регулировку тока нагрузки. Более того, силовой резистор 1 Ом должен рассеивать довольно много энергии, да и силовой полевой транзистор должен использоваться с подходящим радиатором

Заключение

Серия RAC05-xxK/480 — это универсальный источник питания в виде импульсного AC/DC-преобразователя, который можно использовать в однофазном или межфазном включении при входном напряжении 85–528 В переменного тока. Встроенная возможность выдерживания перенапряжения на уровне категории III означает, что он может быть установлен во многих индустриальных приложениях без каких-либо дополнительных внешних компонентов. Такой источник питания востребован и найдет множество применений в индустриальном IoT, системах интеллектуального освещения и отказоустойчивых промышленных приложениях.

Источник: ledsshop.ru

Стиль жизни - Здоровье!