Гидравлический расчет системы отопления на конкретном примере

2 Метод удельных линейных потерь давления

Последовательность
гидравлического расчета методом удельных
линейных потерь давления:

а) вычерчивается
аксонометрическая схемасистемы отопления
(М 1:100).
На
аксонометрической схеме выбирается
главное циркуляционное кольцо. Для
проведения гидравлического расчета
выбираем наиболее нагруженное кольцо,
которое является расчетным (главным),
и второстепенное кольцо (приложение
Ж).При
тупиковом движении теплоносителя
главное циркуляционное кольцо проходит
через наиболее нагруженный и удаленный
от теплового центра (узла) стояк, при
попутном движении – через наиболее
нагруженный средний стояк.

б) главное циркуляционное
кольцо разбивается на расчетные участки,
обозначаемые порядковым номером (начиная
от реперного стояка); указывается расход
теплоносителя на участке G
, кг/ч, длина участка l,
м;

в) для предварительного
выбора диаметра труб определяются
средние удельные потери давления на
трение:

,
Па/м (5.3)

где j
– коэффициент, учитывающий долю потерь
давления на магистралях и стояках, j=0,3
–для магистралей, j=0,7
– для стояков;

Δpр – располагаемое
давление в системе отопления, Па,

Δpр=25 кПа — для
теплоносителяtг=105
С.

г) по величине Rсри
расходу теплоносителя на участке G(приложение Е) находятся
предварительные диаметры труб d,
мм, фактические удельные потери давления
R, Па/м, фактическая
скорость теплоносителя υ,
м/с. Полученные данные заносятся в
таблицу 5.2.

д) определяются потери
давления на участках:

,
Па (5.4)

где R –
удельные потери давления на трение,
Па/м;

l – длина участка, м;

Z
– потери давления на местных сопротивлениях,
Па,

;
(5.5)

ξ – коэффициент,
учитывающий местное сопротивление на
участке, (приложения Б, В);

ρ – плотность
теплоносителя, кг/м3,
(приложение Д);

υ — скоростьтеплоносителя
на участке, м/с, (приложение Е);

е) после предварительного
выбора диаметров труб выполняется
гидравлическая увязка, которая не должна
превышать 15%.

ж) если увязка проходит,
то начинают выполнять расчет второстепенных
циркуляционных колец (аналогично), если
же нет, то на нужных участках устанавливаются
шайбы. Диаметр шайбы подбирают по
формуле:

,
мм, (5.6)

гдеGст
– расход теплоносителя в стояке, кг/ч,
(таблица 3.3);

рш
– требуемые потери давления в шайбе,
Па.

Диафрагмы
устанавливаются у крана на основании
стояка в месте присоединения к подающей
магистрали.

Диафрагмы
диаметром менее 5 мм не устанавливаются.

По
результатам расчетов заполняются
таблицы5.2, 5.3.

1.
Графа 1
– проставляем номера участков;

2.
Графа 2
– в соответствии с аксонометрической
схемой по участкам записываем тепловые
нагрузки, Q,
Вт;

3.
Рассчитываем расход воды в реперном
стояке для расчетного участка (формула
5.1), графа 3:

4.
В соответствии с таблицей 4.2 по диаметру
стояка Dу,
мм выбираем диаметры подводок и
замыкающего участка: Dу(п),
мм; Dу(з),
мм.

5.
Рассчитываем коэффициенты местных
сопротивлений на участке 1 (приложения
Б, В), сумму записываем в графу 10 таблиц
5.2, 5.3.

На
границе двух участков местное сопротивление
относим к участку с меньшим расходом
воды.

Результаты
расчетов сведены в таблицу 5.1.

Таблица
5.1 – Местные сопротивления на расчетных
участках

№ участка,
вид местного сопротивления



Например:Участок
3

2
тройника на проход, =1;

уч(3)=
2х1=2

Например:
Стояк 3

1)
чугунный радиатор – 3 шт., =1,4;

2)
кран регулирующий двойной регулировки
– 6 шт., =13;

3)
отвод гнутый под углом 90
– 6 шт., =0,6;

4)
вентиль обыкновенный прямоточный –
2 шт., =3;

5)
тройник поворотный на ответвление –
2 шт., =1,5.

ст3
= 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = 96,2

Определение потерь давления в трубах

Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:

  • потери в первичном контуре, обозначаемые как ∆Plk;
  • местные издержки теплоносителя (∆Plм);
  • падение давления в особых зонах, называемых “генераторами тепла” под обозначением ∆Pтг;
  • потери внутри встроенной теплообменной системы ∆Pто.

После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.

Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.

Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.

  • h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
  • λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
  • L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
  • D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
  • V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
  • Символ g – это ускорение свободного падения, равное 9,81 м/сек2.

Потери давления происходят из-за трения жидкости о внутреннюю поверхность труб

Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:

  • V – скорость перемещения водных масс, измеряемая в метрах/секунду.
  • D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
  • Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.

Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.

Расчёт сопротивления системы и подбор циркуляционного насоса

Участки повышенного сопротивления, требующие особого внимания

При расчете гидравлического сопротивления системы отопления исключается вариант естественной циркуляции теплоносителя по ее контурам. Рассматривается лишь случай принудительной прогонки по тепловым контурам разветвленной сети отопительных труб. Чтобы система работала с заданной эффективностью, потребуется образец насоса, заведомо гарантирующий нужный напор. Эта величина обычно представляется как объем прокачки теплоносителя в выбранную единицу времени.

Для определения суммарной величины сопротивления, вызванного сцеплением частиц воды с внутренними поверхностями труб в магистралях, применяется следующая формула: R = 510 4 V 1.9 / d 1,32 (Па/м). Значок V в этом соотношении соответствует скорости движения потока. При проведении самостоятельных вычислений всегда предполагается, что эта формула действительна лишь для скоростей не более 1,25 метра/сек. Если пользователю известна величина текущего расхода ГСВ, допускается воспользоваться приблизительной оценкой, позволяющей определить внутреннее сечение труб из полипропилена.

По завершении основных вычислений следует обратиться к особой таблице, в которой указываются примерные сечения трубных проходов в зависимости от полученных при расчете цифр. Наиболее сложным и затратным по времени является процедура определения гидравлического сопротивления в следующих участках действующего трубопровода:

  • в зонах сопряжения его отдельных элементов;
  • в обслуживающих отопительную систему клапанах;
  • в задвижках и контрольных приборах.

После того как все искомые параметры, касающиеся рабочих характеристик теплоносителя, найдены, переходят к определению всех остальных показателей системы.

Последовательность выполнения гидравлического расчета

1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.

Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.

В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.

2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:

а) заданный расход воды;

б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.

Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.

3. Определяется расчетное циркуляционное давление по формуле

, (5.1)

где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное

, (5.2)

где

– сумма длин участков главного циркуляционного кольца;

– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как

, (5.3)

где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.

Значение коэффициента можно определить из табл.5.1.

Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления

(),C

, кг/(м3К)

85-65

0,6

95-70

0,64

105-70

0,66

115-70

0,68

– естественное давление, возникающее в результате охлаждения воды в трубопроводах .

В насосных системах с нижней разводкой величинойможно пренебречь.

  1. Определяются удельные потери давления на трение

, (5.4)

где к=0,65 определяет долю потерь давления на трение.

5. Расход воды на участке определяется по формуле

(5.5)

гдеQ – тепловая нагрузка на участке, Вт:

(tг – tо) – разность температур теплоносителя.

6. По величинамиподбираются стандартные размеры труб .

6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.

При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.

7. Определяются потери давления на трение на расчетном участке, Па:

. (5.6)

Результаты расчета заносят в табл.5.2.

8. Определяются потери давления в местных сопротивлениях, используя или формулу:

, (5.7)

где– сумма коэффициентов местных сопротивлений на расчетном участке .

Значение ξ на каждом участке сводят в табл. 5.3.

Таблица 5.3 – Коэффициенты местных сопротивлений

№ п/п

Наименования участков и местных сопротивлений

Значения коэффициентов местных сопротивлений

Примечания

9. Определяют суммарные потери давления на каждом участке

. (5.8)

10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце

. (5.9)

11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на

. (5.10)

Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.

Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.

12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.

Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.

Таблица 5.2 – Результаты гидравлического расчета для системы отопления

На схеме трубопровода

По предварительному расчету

По окончательному расчету

Номер участка

Тепловая нагрузка Q, Вт

Расход теплоносителя G, кг/ч

Длина участка l,м

Диаметрd, мм

Скоростьv, м/с

Удельные потери давления на трение R, Па/м

Потери давления на трение Δртр, Па

Сумма коэффициентов местных сопротивлений∑ξ

Потери давления в местных сопротивлениях Z

d, мм

v, м/с

R, Па/м

Δртр, Па

ξ

Z, Па

Rl+Z, Па

Занятие 6

Что влияет на скорость теплоносителя в системе отопления:

— схема системы отопления; — вид теплоносителя; — мощность, производительность циркуляционного насоса; — из каких материалов изготовлены трубы и их диаметр; — отсутствие воздушных пробок и засоров в трубах и радиаторах.

Для частного дома наиболее оптимальным будет скорость теплоносителя в пределах 0,5 – 1,5 м/с. Для административно-бытовых зданиях – не более 2 м/с. Для производственных помещений – не более 3 м/с. Верхний предел скорости теплоносителя выбирается, в основном, из-за уровня шума в трубах.

Многие циркуляционные насосы имеют регулятор скорости потока жидкости, так что возможно подобрать наиболее оптимальную именно для вашей системы. Правильно нужно выбирать и сам насос. Не надо брать с большим запасом мощности, так как будет большее потребление электроэнергии. При большой протяжённости системы отопления, большом количестве контуров, этажности и так далее лучше устанавливать несколько насосов меньшей производительности. Например, отдельно поставить насос на тёплый пол, на второй этаж.

Виды систем отопления с гравитационной циркуляцией

Несмотря на простое устройство системы водяного отопления с самоциркуляцией теплоносителя, существует как минимум четыре, пользующихся популярностью, схемы монтажа. Выбор типа разводки зависит от характеристик самого здания и ожидаемой производительности.

Чтобы определить, какая схема будет работоспособной, в каждом отдельном случае требуется выполнить гидравлический расчет системы, учесть характеристики отопительного агрегата, рассчитать диаметр трубы и т.п. При выполнении вычислений может потребоваться помощь профессионала.

Закрытая система с самотечной циркуляцией

В странах ЕС, системы закрытого типа пользуются наибольшей популярностью среди других решений. В РФ схема пока не получила широкого применения. Принципы действия водяной системы отопления закрытого типа с безнасосной циркуляцией заключается в следующем:

  • При нагревании теплоноситель расширяется, происходит вытеснение воды из контура отопления.
  • Под давлением жидкость поступает в закрытый мембранный расширительный бак. Конструкция емкости представляет полость, разделенную мембраной на две части. Одна половина бачка заполнена газом (в большинстве моделей используется азот). Вторая часть остается пустой для наполнения теплоносителем.
  • При нагревании жидкости создается давление, достаточное, чтобы продавить мембрану и сжать азот. После остывания, происходит обратный процесс, и газ выдавливает воду из бачка.

В остальном, системы закрытого типа, работают, как и остальные схемы отопления с естественной циркуляцией. В качестве минусов можно выделить зависимость от объема расширительного бака. Для помещений с большой отапливаемой площадью, потребуется установить вместительную емкость, что не всегда целесообразно.

Открытая система с самотечной циркуляцией

Система отопления открытого типа отличается от предыдущего типа только конструкцией расширительного бака. Данная схема чаще всего использовалась в старых зданиях. Преимуществами открытой системы является возможность самостоятельного изготовления емкости из подручных материалов. Бачок, обычно имеет скромные габариты и устанавливается на кровле или под потолком жилой комнаты.

Главным недостатком открытых конструкций является попадание воздуха в трубы и радиаторы отопления, что приводит к усилению коррозии и быстрому выходу из строя греющих элементов. Завоздушивание системы также частый «гость» в схемах открытого типа. Поэтому, радиаторы устанавливаются под углом, обязательно предусматриваются краны Маевского, для стравливания воздуха.

Однотрубная система с самоциркуляцией

Однотрубная горизонтальная система с естественной циркуляцией имеет низкую теплоэффективность, поэтому используется крайне редко. Суть схемы такова, что подающая труба последовательно подключена к радиаторам.

Нагретый теплоноситель поступает в верхний патрубок батареи и выводится через нижний отвод. После этого тепло поступает к следующему узлу отопления и так до последней точки. От крайней батареи к котлу возвращается обратка.

Преимуществ у данного решения несколько:

  1. Отсутствует парный трубопровод под потолком и над уровнем пола.
  2. Экономятся средства на монтаж системы.

Недостатки такого решения очевидны. Теплоотдача радиаторов отопления и интенсивность их нагрева снижается по мере отдаленности от котла. Как показывает практика, однотрубная система отопления двухэтажного дома с естественной циркуляцией, даже при соблюдении всех уклонов и подбора правильного диаметра труб, зачастую переделывается (посредством монтажа насосного оборудования).

Двухтрубная система с самоциркуляцией

Двухтрубная система отопления в частном доме с естественной циркуляцией, имеет следующие конструктивные особенности:

  1. Подача и обратка проходят по разным трубам.
  2. Подающий трубопровод подсоединен к каждому радиатору через входной отвод.
  3. Второй подводкой батарея подключается к обратке.

В результате, двухтрубная система радиаторного типа дает следующие преимущества:

  1. Равномерное распределение тепла.
  2. Отсутствие необходимости в добавлении секций радиатора для лучшего прогрева.
  3. Проще выполнить регулировку системы.
  4. Диаметр водяного контура, по крайней мере, на размер меньше чем в однотрубных схемах.
  5. Отсутствие строгих правил установки двухтрубной системы. Допускаются небольшие отклонения относительно уклонов.

Главным достоинством двухтрубной системы отопления с нижней и верхней разводкой является простота и одновременно эффективность конструкции, что позволяет нивелировать ошибки, допущенные в расчетах или во время проведения монтажных работ.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Величина Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений — Σ(ξ)

Пояснения:

  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Результат Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх+tвых)/2 82,5 Средняя температура воды tср в °C
D13 !ERROR! D12 does not contain a number or expression n=0,0178/(1+0,0337*tср+0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды — n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 !ERROR! D4 does not contain a number or expression G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320 λ=0,0000147*Re при 2320≤Re≤4000 λ=0,11*(68/Re+∆/d)0,25 при Re≥4000 0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 !ERROR! Cell D20 does not exist dPтр=dPтр*9,81*10000 45565,9 и Па соответственно D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр+dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2

Пояснения:

  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты: синий — исходные данные;
  • чёрный — промежуточные/неглавные результаты;
  • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, «зимний сад» и подсобные помещения.

Фундамент из монолитной железобетонной плиты (20 см), наружные стены — бетон (25 см) со штукатуркой, крыша — перекрытия из деревянных балок, кровля — металлочерепица и минеральная вата (10 см)

Габариты здания. Высота этажа 3 метра. Малое окно фасадной и тыльной части здания 1470*1420 мм, большое окно фасада 2080*1420 мм, входные двери 2000*900 мм, двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня. Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей — это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола 152 м2
  • площадь крыши 180 м2 (учитывая высоту чердака 1.3 метра и ширину прогона — 4 метра)
  • площадь окон 3*1.47*1.42+2.08*1.42=9.22 м2
  • площадь дверей будет равна 2*0.9+2*2*1.4=7.4 м2

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2. Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт
  • Qкрыша=180*40*0.1/0.05=14400 Вт
  • Qокно=9.22*40*0.36/0.5=265.54 Вт
  • Qдвери=7.4*40*0.15/0.75=59.2 Вт

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт. В итоге подсчитаем мощность котла:

  • Ркотла=Qпотерь*Sотаплив_комнат*К/100=
  • 19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт. Переходим к расчёту количества теплоносителя в системе:

W=13.5*P=13.5*21=283.5 литров

Скорость теплоносителя будет составлять:

V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 литров

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Тепловой расчёт отопления

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Галерея изображений
Фото из
Расчеты и грамотное проектирование контуров автономного отопления необходимы для подбора оборудования, способного отапливать дом определенной площади

Расчеты производятся с ориентиром на самых холодный месяц в году, т.е. на период максимальной нагрузки системы

В расчетах учитываются потери, происходящие через оконные и дверные проемы, а также через связанную с улицей вентиляционную систему

Обязательно учитываются теплотехнические характеристики строительных конструкций, одной из задач которых является сохранение тепла

Независимая отопительная система частного дома должна справляться с нагревом воздуха, поступающего через форточки в период проветривания и через открытые двери

Котел независимой отопительной системы должен справляться с восполнением потерь тепла. Его мощность должна позволять поддерживать в доме температуру +20º С

После определения оптимального котла по мощности выбирают наиболее подходящий агрегат по КПД и эксплуатационным расходам

Для систем с принудительным движением теплоносителя проводят гидравлические расчеты, чтобы подобрать насос и оптимальный диаметр труб

Цель проведения расчетов для отопления

Специфика выполнения расчетов отопления

Учет теплопотерь через проемы

Учет теплоизоляции конструкций

Расход тепла на нагрев поступающего воздуха

Правила подбора котла для отопления

Производительность оборудования

Отопительный контур принудительного типа

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении. Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери
  • определить количество и условия использования теплоносителя
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций. На основе полученных данных подобрать компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

Отопление — это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании. Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления. В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность насоса.

Тепловой расчёт — это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.

Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Особенности подбора радиаторов

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы «тёплый» пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор — это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через «лепестки».

Алюминиевый и биметаллический радиатор отопления пришёл на смену массивным чугунным батареям. Простота производства, высокая теплоотдача, удачная конструкция и дизайн сделали это изделие популярным и распространённым инструментом излучения тепла в помещении

Существует несколько методик расчёта количества секций радиатора в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности расчёта.

  1. По площади. N=(S*100)/C, где N — количество секций, S — площадь помещения (м2), C — теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт — количество теплового потока, которое необходимо для нагрева 1 м2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму. N=(S*H*41)/C, где N, S, C — аналогично. Н — высота помещения, 41 Вт — количество теплового потока, которое необходимо для нагрева 1 м3 (эмпирическая величина).
  3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 — аналогично. к1 — учёт количества камер в стеклопакете окна комнаты, к2 — теплоизоляция стен, к3 — соотношение площади окон к площади помещения, к4 — средняя минусовая температура в наиболее холодную неделю зимы, к5 — количество наружных стен комнаты (которые «выходят» на улицу), к6 — тип помещения сверху, к7 — высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

Источник: ledsshop.ru

Стиль жизни - Здоровье!