Генератор трехфазного тока рисунок

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток. Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Порядок доработки обмоток

Прежде чем сделать генератор из асинхронного двигателя, следует разобраться с его статорными катушками, соединёнными между собой и включаемыми в питающую линию по определённой схеме.

Дополнительная информация. Для классического подключения асинхронных механизмов используются два типа включения статорных обмоток: по так называемой схеме «звезда» или «в треугольник».

В первом случае все три линейных катушки (А, В и С) с одной стороны объединяются в общий нулевой провод, в то время как вторые их концы подключаются к трём фазным линиям. При включении «треугольником» конец одной катушки соединяется с началом второй, а её конец, в свою очередь, – с началом третьей обмотки и так далее вплоть до замыкания цепочки.

В результате такого подключения образуется правильная геометрическая фигура, вершины которой соответствуют трём фазным проводам, а нулевой провод вообще отсутствует.

Из соображений простоты монтажа и безопасности эксплуатации в бытовых схемах обычно выбирается подключение типа «звезда», обеспечивающее возможность организации местного (повторного) защитного заземления.

При доработке двигателя следует снять крышку распределительной коробки и получить доступ к клеммам, на которые в нормальных условиях поступает трёхфазное питающее напряжение. В генераторном режиме к этим контактам следует подсоединить питающую линию с подключёнными к ней бытовыми трёхфазными потребителями.

Для организации однофазного питания (розеточных линий и цепей освещения, в частности) их нужно будет подключить одним концом к выбранному фазному контакту А, В или С, а другим – к общему нулевому проводу. Порядок подсоединения проводов к асинхронному двигателю приводится на следующем рисунке.

Таким образом, генератор своими руками, собранный из трёхфазного двигателя, будет нагружен на все питающие цепи, а конечные потребители получат полагающиеся им нормативные мощности.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Разновидности генераторов

Бензиновый генератор DDE GG3300P

По виду используемого в агрегате топлива все известные генераторные устройства могут быть:

  • бензиновыми;
  • дизельными;
  • агрегатами, работающими на газу или на дровах.

Первые два варианта привлекают внимание пользователей, взявших за основу готовый двигатель, работающий на бензиновом или дизельном топливе. По своему назначению известные образцы генераторов трехфазного тока делятся на основные и резервные агрегаты. Вопрос о способах включения в бытовую сеть касается и тех и других моделей

Вопрос о способах включения в бытовую сеть касается и тех и других моделей

По своему назначению известные образцы генераторов трехфазного тока делятся на основные и резервные агрегаты. Вопрос о способах включения в бытовую сеть касается и тех и других моделей.

Трехфазный генератор | Формулы и расчеты онлайн

В трехфазном генераторе имеются три одинаковые обмотки, расположенные под углом 120° друг к другу. В обмотках возникают сдвинутые на 120° переменные напряжения. Это — трехфазный ток.

Из соотношения

= 0 ]

следует:

Трехфазный ток (напряжение) — алгебраическая сумма трех токов (напряжений) в каждый момент времени равна нулю.

трехфазный генератор — трехфазный ток

Чтобы сократить число проводов, необходимых для передачи трехфазного тока, обмотки генератора (их называют фазными обмотками) соединяют особым образом.

Соединение треугольником в трехфазном генераторе

Три фазных обмотки соединяются последовательно, так что образуется замкнутый контур.

Соединение треугольником в трехфазном генераторе

Для напряжения между обмотками (линейного напряжения) и тока в проводниках справедливы соотношения

Линейное напряжение:

Линейный ток:

Соединение звездой в трехфазном генераторе

При соединении звездой все три фазные обмотки соединяются в одной точке — центре звезды. Эта точка заземляется, и провод, соединяющий центр звезды с землей, служит четвертым, так называемым нулевым проводником.

Соединение звездой в трехфазном генераторе

При соединении звездой напряжения и токи связаны следующими соотношениями:

Линейное напряжение:

Фазное напряжение:

и

Линейный ток:

Ток в нулевом проводнике:

В осветительной сети фaзное напряжение равно 220 В, линейное напряжение равно

стр. 674

Секреты подбора электродвигателя

Асинхронная машина может работать в режиме:
1. двигателя, когда на нее подается электрическое напряжение;
2. или генератора, если вращать ее ротор с определенной величиной крутящего момента от дополнительного источника. Им может быть любой двигатель внутреннего сгорания, водяная турбина, ветряное колесо или другой источник энергии.
Отработавшие на производстве трехфазные электродвигатели часто списывают. Они попадают в руки домашнего мастера практически бесплатно или по символической цене.
Ими не сложно воспользоваться для решения бытовых или хозяйственных задач. Потребуется только оценить конструкцию: возможности по выработке электроэнергии определенного напряжения и мощности от источника энергии с конкретным числом оборотов.
Для этого следует изучить характеристики статора и ротора.

Коротко о статоре

Конструкция статора асинхронного двигателя представлена:
· тремя обмотками, по которым проходит электрический ток;
· магнитопроводом из пластин электротехнического железа, созданному для передачи магнитного потока.
Соединение концов обмоток может выполняться схемой звезды либо треугольника. Каждый вариант имеет свои особенности. Их надо учитывать для различных условий эксплуатации.

Что надо знать о роторе

Он имеет три обмотки из изолированного провода. по которым протекают наводимые токи и формируют суммарный крутящий момент магнитного поля.
Эти обмотки могут быть:
1. выведены на внешние клеммы статора через контактные вращающиеся кольца с щеточным механизмом. Его называют ротором с фазной обмоткой;
2. короткозамкнуты встроенным алюминиевым кольцом — «беличье колесо».
Выглядят они следующим образом.
Для бытовых целей предпочтительнее использовать электродвигатель у которого работает короткозамкнутый ротор. О нем идет речь дальше.
Однако, если попалась в руки модель с фазным ротором, то ее легко переделать в короткозамкнутую: достаточно просто зашунтировать выходные контакты между собой.

Важные электрические характеристики

Чтобы сделать генератор из асинхронного двигателя стоит учесть:
· поперечное сечение провода обмотки. Оно ограничивается тепловым воздействием от протекающих суммарных токов, формируемых как от активной нагрузки, так и реактивных составляющих;
· число оборотов, на которые рассчитан электродвигатель. Это оптимальная величина, котрой следует придерживаться при выборе подключения к источнику энергии;
· КПД, cos φ;
· схему подключения обмоток.
Эти величины указываются на табличке корпуса или рассчитываются косвенными методами.Как работает двигатель в режиме генератора
При раскрутке ротора необходимо возбудить электромагнитное поле. Его добиваются за счет параллельного подключения к обмоткам емкостной нагрузки от батареи конденсаторов разными методами. Рассмотрим их.

Две схемы звезды

Типовое подключение выглядит следующим образом.
Упрощенный вариант схемы показан ниже.
Здесь применяют рабочий и пусковой конденсаторы, которые коммутируются собственными переключателями.

Схема треугольника

Она позволяет вырабатывать 220 вольт линейного напряжения.Как подобрать конденсаторы
Емкость конденсатора для возбуждения генератора можно подсчитать по формуле, исходя из реактивной мощности, частоты и напряжения.С=Q/2π∙f∙U2.
Следует учитывать, что они по разному влияют на нагрев обмоток в различных режимах. Поэтому для холостого хода и работы генератора используют ступенчатое переключение.
Рекомендуемые расчеты представлены таблицей.
Конденсаторную батарею рекомендую набирать из бумажных моделей на 500 вольт. Пользоваться электрическими конструкциями не рекомендую даже при включении каждой полугармоники через диод.Электролит при нагревании может закипеть, что приведет к взрыву корпуса.

Разница между одно и трехфазным подключением

Все подключения, что в однофазной, что в трехфазной сети выполняются полностью идентично, за исключением количества силовых проводов. Единственный важный нюанс касается так называемой фазы управления – если подключать к сети пускатель, то его основные контакты подключают и отключают от сети силовые провода, а питание для электромагнитной катушки тоже надо откуда то брать.

В однофазной сети проблем нет – фаза одна и такого вопроса просто не существует, а в трехфазной все несколько сложнее – есть L1, L2 и L3. Не вдаваясь в технические подробности, ответ здесь один – для управляющих цепей можно использовать любую из фаз, но только одну. Т. е. если катушка КМ1 запитана от фазы L3, то управление остальными пускателями, кнопки «Старт» и «Стоп» тоже надо «подвешивать» только на нее. Сделать это не сложно – просто отметить, какого цвета провод на нужной фазе, а если кабель с одноцветными жилами, то наклеить или нарисовать на них маркеры.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы

Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль)

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

ЗвездаТреугольникОбозначение
Uл, Uф — линейное и фазовое напряжение, В,
Iл, Iф — линейный и фазовый ток, А,
S — полная мощность, Вт
P — активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение выводаНачалоКонец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение выводаНачалоКонец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Устройство

Назначение электрического генератора – преобразовывать механическую энергию в электрическую. Он состоит из 2-х основных частей – подвижного ротора и неподвижного статора.

  • Ротор закрепляется на подшипниках. С одной стороны к нему присоединяется привод от внешнего источника движения, а с другой – крыльчатка для охлаждения.
  • Статор – неподвижный элемент. На нем расположены лапы крепления установки, охлаждающие ребра и выходные клеммы. А еще табличка с техническими характеристиками.

Другие составные части.

  • Скользящий контакт ротора. Необходим для питания его обмоток или отвода генерируемого электричества. В большинстве моделей его нет.
  • Средства индикации и контроля.
  • Боковые крышки.
  • Масленки для подачи смазки к подшипникам и другие не менее важные элементы.

Теперь нужно разобраться в методе получения электричества.

  • Как выбрать хороший генератор для дома
  • Как правильно подключить генератор к дому
  • Как я делал себе авр для генератора
  • Изготовим электрогенератор своими руками
  • Генератор переменного тока
  • Как пользоваться мультиметром правильно
  • Правильный выбор трансформатора тока по госту
  • Узо в электрике
  • Делаем бензогенератор своими руками
  • Как проверить основные параметры аккумулятора мультиметром
  • 5 опасных признаков того, что в вашем доме утечка электричества
  • Расчет сопротивления параллельного соединения резисторов
  • Две схемы реле времени с задержкой выключения на 220в
  • Водородные котлы отопления: почему не стоит выбирать котлоагрегат на водородном топливе для отопления частного дома, обзор и сравнение эффективности и экономичности, лучшие модели и их цены
  • Как проверить заземление
  • Газовые электростанции. автономный источник энергии в большом диапазоне мощности
  • Варианты схем авр для подключения генератора
  • Схема участка электрической цепи
  • Почему кондиционер булькает в нерабочем состоянии при ветре
  • Как с помощью болгарки резать металл
  • Что такое фаза и ноль в электричестве
  • Как обновить старую кафельную плитку в ванной комнате
  • Как клеить стеклохолст правильно?
  • Что такое твердотельное реле, назначение, принцип работы
  • Почему водонагреватель бьет током и что делать

С этим читают

  • Как выбрать хороший генератор для дома
  • Как правильно подключить генератор к дому
  • Как я делал себе авр для генератора
  • Изготовим электрогенератор своими руками
  • Генератор переменного тока
  • Как пользоваться мультиметром правильно
  • Правильный выбор трансформатора тока по госту
  • Узо в электрике
  • Делаем бензогенератор своими руками
  • Как проверить основные параметры аккумулятора мультиметром

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Рис. 5. Схема подключения генератора к бортовой сети авто

ФИЗИКА

§ 3.5. Трехфазный ток

Трехфазный ток получил широкое распространение во всем мире. Он обеспечивает более выгодные условия передачи электроэнергии по проводам и позволяет создать простые по устройству, надежные и удобные в работе электродвигатели. Основоположником техники трехфазного тока является русский физик и электротехник М. О. Доливо-Добровольский.

Трехфазным током называется система трех гармонических токов одинаковых частот и амплитуд, сдвинутых по фазе на 1/3 периода (φ = 120°, или 2π/3).

Генератор трехфазного тока

Трехфазную систему токов принципиально можно получить от трех одинаковых генераторов переменного однофазного тока. Одинаковые роторы у этих генераторов насажены жестко на общий вал (рис, 3.12). Статорные обмотки генераторов повернуты друг относительно друга на 120° в сторону вращения роторов (см. рис. 3.12).

Рис. 3.12

При равномерном вращении роторов в статорных обмотках каждого генератора индуцируется гармоническая ЭДС (см. § 3.2). Частоты и амплитуды всех трех ЭДС совпадают. Колебания ЭДС второго генератора запаздывают по фазе относительно колебаний ЭДС первого генератора на 2π/3 (120°), а колебания ЭДС третьего генератора запаздывают относительно колебаний ЭДС второго генератора тоже на 2π/3 (120°) или относительно колебаний ЭДС первого генератора на 4π/3 (240°). Объясняется это тем, что в процессе вращения роторы пересекают плоскости статорных обмоток второго и третьего генераторов с запаздыванием соответственно на 1/3 и 2/3 периода по сравнению с моментом прохождения ротора через плоскость статорной обмотки первого генератора.

Один из выводов обмотки генератора называют ее началом, а другой — концом. Какой вывод считать началом, а какой — концом, зависит от выбора положительного направления обхода контура статорной обмотки. Этот выбор, хотя и является произвольным, должен быть одинаковым для всех генераторов. Примем, например, за положительное направление обхода статорной обмотки первого генератора направление по часовой стрелке, если смотреть на эту обмотку со стороны выхода из плоскости обмотки северного полюса индуктора (ротора). Тогда началом обмотки является клемма А, а ее концом — клемма X. Так же определяются начала (B и С) и концы (У и Z) статорных обмоток второго и третьего генераторов (см. рис. 3.12).

Но получение трехфазного тока при помощи трех генераторов оказывается технически сложным и экономически невыгодным. Гораздо проще все три статорные обмотки совместить в одном корпусе (рис. 3.13) и вместо трех роторов применить один. Такой генератор называется генератором трехфазного тока.

Рис. 3.13

Таким образом, статор генератора трехфазного тока имеет три уложенные в пазах статора независимые обмотки, сдвинутые в пространстве одна относительно другой на 1/3 окружности статора. Каждая статорная обмотка называется фазой* генератора.

Ротор генератора трехфазного тока конструктивно ничем не отличается от ротора генератора однофазного тока.

При вращении ротора во всех обмотках статора индуцируются одинаковые по частоте и амплитуде ЭДС, но сдвинутые по фазе на 2π/3. Приняв за начало отсчета времени момент, в который ЭДС первой фазы еA имеет нулевое значение (рис. 3.14), можно записать:

Электродвижущая сила второй фазы генератора, отстающая от ЭДС первой фазы на 2π/3, равна:

ЭДС третьей фазы, отстающая от ЭДС второй фазы на 2π/3 и от ЭДС первой фазы на 4π/3, записывается так:

На рисунке 3.14 представлены графики ЭДС, индуцируемых в обмотках генератора трехфазного тока. Каждая из обмоток трехфазного генератора может быть самостоятельным источником тока и питать свою цепь. В этом случае получается несвязанная трехфазная система, требующая для передачи энергии шесть проводов. На практике такие системы не применяются.

Рис. 3.14

С целью уменьшения числа проводов, идущих во внешнюю цепь, обмотки трехфазного генератора соединяются между собой, образуя электрически связанную трехфазную систему. Можно так соединить между собой обмотки генератора трехфазного тока, чтобы вместо шести проводов обойтись четырьмя или даже тремя проводами. Это значительно экономит материал, идущий на изготовление проводов.

* Этот термин не следует путать с фазой гармонически колеблющейся величины.

Источник: ledsshop.ru

Стиль жизни - Здоровье!