Генератор переменного тока для чего магнит

Конструкция и составные части

Чем отличаются диэлектрические галоши от бот, где их применяют и как поверяют

Центральным рабочим элементом привода является блок соленоида, который образуется полой катушкой и магнитным сердечником. Коммуникационные электромагнитные связи данного компонента с другими деталями обеспечиваются малой внутренней арматурой с управляющими импульсными клапанами. В нормальном состоянии сердечник поддерживается пружиной со штоком, который опирается в седло.

Кроме того, типовое устройство электромагнитного привода предусматривает наличие так называемого ручного дублера рабочей части, который берет на себя функции механизма в моменты резких перепадов или полного отсутствия напряжения. Может предусматриваться и дополнительный функционал, обеспечиваемый средствами сигнализации, вспомогательными запирающими элементами и фиксаторами позиции сердечника. Но поскольку одним из преимуществ приводов такого типа является небольшой размер, то в целях оптимизации разработчики стараются исключать чрезмерное насыщение конструкции второстепенными устройствами.

Типичный цикл работы устройства

Другие узлы, составляющие конструкцию магнитогидродинамического генератора, лучше всего перечислить вместе с описанием функциональных процессов в той последовательности, в которой они происходят.

  1. Камера сгорания принимает загружаемое в нее топливо. Также добавляются окислители и различные присадки.
  2. Топливо начинает гореть, что позволяет образоваться газу в качестве продукта сгорания.
  3. Далее задействуется сопло генератора. Через него газы проходят, после чего они расширяются, а их скорость возрастает до скорости звука.
  4. Действие доходит до камеры, пропускающей через себя магнитное поле. На ее стенках находятся специальные электроды. Именно сюда поступают газы на данном этапе цикла.
  5. Затем рабочее тело под влиянием заряженных частиц отклоняется от своей первичной траектории. Новое направление находится в точности там, где располагаются электроды.
  6. Завершающий этап. Происходит образование электрического тока между электродами. На это цикл заканчивается.

Ветрогенератор на неодимовых магнитах своими руками: монтаж основы

В качестве основы для таких установок выступают автомобильная ступица плюс тормозные диски. Преимущество в том, что её просто достать (в т.ч. купить б/у) и не нужно основательно переделывать или дополнять:

  • разберите;
  • почистите от ржавчины (например, стальной щёткой, насаженной на дрель);
  • смажьте детали;
  • соберите;
  • покрасьте корпус и пользуйтесь.

Неодимовые магниты будут крепиться прямо на ступицу. Их потребуется около 20 штук: примерная высота 8 мм, диаметр 25 мм

Очень важно правильно, равномерно и точно расположить магниты – по кругу, с чередованием полюсов. Крепить их лучше на клей, который стоит предварительно испытать на прочность

После того как все магниты будут приклеены, залейте поверхность диска эпоксидной смолой. По контуру намотайте борт. Материал и способ может быть разным:

  • грубый картон;
  • гибкая пластмасса;
  • пластилин;
  • тонкая полоска шпона.

Ветрогенератор

Для этого генератора лучше всего подходит трёхфазная модель. Она сложна в сборке, но имеет ощутимые преимущества:

  • не производит вибрацию, которая является бичом ветрогенераторов;
  • бесшумна;
  • осуществляет постоянную подачу тока;
  • генерирует стабильную мощность (фазы компенсируют друг друга).

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Вам это будет интересно Выбор электросчетчика

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.

Маломощный генератор

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов. Асинхронный генератор

Асинхронный генератор

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.

Синхронный генератор

Конструкция генератора переменного тока

В самом общем случае, наиболее часто применяемый трехфазный генератор переменного тока состоит из явнополюсного ротора с одной парой полюсов (маломощные оборотистые генераторы) или 2 парами их, расположенными крестообразно (наиболее распространенные генераторы мощностями до нескольких сот киловатт. Такая конструкция не только позволяет более рационально использовать материал, но и для промышленной частоты переменного тока 50 Гц дает рабочую частоту вращения ротора 1500 оборотов в минуту, что хорошо согласуется с тяговыми оборотами дизельных двигателей этой мощности), а также статора с 3 (в первом случае) или 6 (во втором) силовыми обмотками и полюсами. Напряжение с силовых обмоток и есть то, которое подается потребителю.

Ротор может быть выполнен на постоянных магнитах только для весьма маломощных генераторов, во всех остальных случаях он имеет намотку т.н. обмотки возбуждения, то есть представляет из себя электромагнит постоянного тока, запитываемый во вращающемся роторе через щёточно-коллекторный узел с простыми кольцевыми контактами, более устойчивыми к износу нежели разрезной ламельный коллектор машин постоянного тока.

В сколько-либо мощном генераторе переменного тока с обмоткой возбуждения на роторе, неизбежно встает вопрос — какой величины ток возбуждения подавать на катушку? Ведь от этого зависит выходное напряжение такого генератора. И это напряжение должно поддерживаться в определенных рамках, например, 380 Вольт, вне зависимости от тока в цепи потребителей, значительная величина которого способна также значительно уменьшать выходное напряжение генератора. Кроме этого, нагрузка по фазам вообще может быть очень неравномерной.

Этот вопрос решается в современных генераторах, как правило введением в выходные цепи фаз генератора электромагнитных трансформаторов тока, соединенных вторичными обмотками треугольником или звездой, и дающими на выходе переменное трехфазное напряжение амплитудой единицы — десятки вольт, строго пропорциональное и согласованное по фазе с величиной тока нагрузки фаз генератора — чем больше потребляемый в данный момент по данной фазе ток, тем больше напряжение на выходе соответствующей фазы соответствующего токового трансформатора. Этим и достигается стабилизирующий и авторегулирующий эффект. Все три регулирующие фазы с вторичных обмоток токовых трансформаторов далее заводятся на обычный 3-фазный выпрямитель из 6 полупроводниковых диодов, и на выходе его получается постоянный ток нужной величины, и подаваемый на обмотку возбуждения ротора через щёточно-коллекторный узел. Схема может быть дополнена реостатным узлом для некоторой свободы регулирования тока возбуждения.

В устаревших или маломощных генераторах вместо токовых трансформаторов применялась система из мощных реостатов, с вычленением рабочего тока возбуждения за счет изменения падения напряжения на резисторе при изменении тока через него. Эти схемы были менее точны и гораздо менее экономичны.

В обоих случаях существует проблема появления начального напряжения на силовых обмотках генератора в момент начала его работы — действительно, если возбуждения ещё нет, то и току во вторичных обмотках токовых трансформаторов взяться неоткуда. Проблема, однако, решается тем что железо ярма ротора обладает некоторой способностью к остаточному намагничиванию, эта остаточная намагниченность оказывается достаточной для возбуждения в силовых обмотках напряжения в несколько вольт, достаточного для самовозбуждения генератора и выхода его на рабочие характеристики.

В генераторах с самовозбуждением — серьезную опасность представляет случайная подача внешнего напряжения промышленной электрической сети на силовые обмотки статора. Хотя это не приводит к каким-то негативным последствиям для самих обмоток генератора, мощное переменное магнитное поле от внешней сети эффективно размагничивает статор, в результате чего генератор теряет способность к самовозбуждению. В этом случае требуется начальная подача напряжения возбуждения от какого-то внешнего источника, например, автомобильного аккумулятора, иногда такая процедура полностью излечивает статор, но в некоторых случаях необходимость подачи внешнего возбуждения остается навсегда.

Главный генератор переменного тока

Главный генератор состоит из вращающегося магнитного поля, как было указано ранее, и неподвижной арматуры (генераторные обмотки)

Как согласовать параметры функциональных частей

Лопасти по энергетическому потенциалу должны соответствовать определенному асинхронному двигателю или собранному своими руками ротору на магнитах. При существенных отклонениях для получения достаточной электрической мощности придется создавать новые изделия с нужными параметрами. Обратная ситуация также недопустима. Слишком крупные лопасти не способны быстро вращаться. При сильном ветре повышается риск разрушения подобных конструкций.

Чтобы не ошибиться, составляют таблицу с режимами работы оборудования при разной скорости вращения с шагом 50-100 об./мин. Далее пользуются специализированными калькуляторами, которые по заданным значениям рассчитывают геометрические параметры винта. Эти изделия создают из подходящей древесины, металла, пластика. В качестве заготовок подойдут стандартные трубы из поливинилхлорида для наружных канализационных сетей.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.

Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Намотка генератора

По классической схеме намотка катушек генератора производится в одну сторону. Это необходимо для того, чтобы ток протекал в одну сторону, иначе получится короткое замыкание и перегрев генератора. При этом, на аксиальных генераторах используется чередование направления намотки катушек, когда одна мотается по часовой стрелке, другая — против, затем снова по часовой стрелке и т.д.

Размер катушек должен соответствовать размеру магнитов — центральное отверстие примерно соответствует величине магнита. Оптимальная форма катушки слегка вытянута по направлению к центру диска, хотя многие используют круглые формы. Намотка трехфазных катушек ведется по принципу «одна через две», т.е. каждая катушка одной фазы имеет по две катушки других фаз по соседству. Производится соединение «звездой», позволяющее стабилизировать отдачу и получить более ровные показатели тока по амплитуде.

Основные классификации

Существует множество вариантов исполнения готового устройства, однако принцип работы будет фактически одинаковым в любом из них. К примеру, возможен запуск магнитогидродинамического генератора на твердом топливе вроде продуктов сгорания ископаемых. Также в качестве источника энергии применяются пары щелочных металлов и их двухфазные смеси с жидкими металлами. По продолжительности работы МГД-генераторы делятся на длительные и кратковременные, а последние — на импульсные и взрывные. Из источников тепла можно назвать ядерные реакторы, теплообменные устройства и реактивные двигатели.

Кроме того, есть также классификация по типу рабочего цикла. Здесь подразделение происходит лишь на два основных типа. Генераторы с открытым циклом имеют рабочее тело, смешанное с присадками. Продукты сгорания идут через рабочую камеру, где они в процессе очищаются от примесей и выбрасываются в атмосферу. В замкнутом цикле рабочее тело попадает в теплообменник и лишь после этого поступает в камеру генератора. Далее продукты сгорания ждет компрессор, который и заканчивает цикл. После этого рабочее тело возвращается на первый этап в теплообменник.

Теоретическая часть

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

Строение простейшего электромагнитного генератора

Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Питание ротора постоянным током: особенности процесса

Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.

Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).

Рис. 3.14. Зубчатый ротор генератора.

Возбуждение генератора: знакомство с определением

Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.

Обмотка возбуждения генератора: знакомство с определением

Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ)

Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока

Для чего служит обмотка возбуждения генератора

Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).

Катушка возбуждения генератора: знакомство с определением

Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:

  • Статор – он неподвижный.
  • Ротор – производит вращения вокруг статора.

Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:
  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:
  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:
  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:
  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Вероятно, Вам также понравятся следующие материалы:Супермаховик- альтернативный накопитель энергии

Спасибо, что дочитали до конца! Не забывайте , Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

Cамодельный генератор для ветряка

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно.Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах

Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра

Генератор для ветряка видео.

Популярные самоделки на нашем сайте

  • Бензиновый генератор своими руками
  • Самодельный генератор на 220 В с приводом от велосипеда
  • Генератор на 220 вольт своими руками
  • Тепловая мини электростанция: генератор на элементе Пельтье

Источник: ledsshop.ru

Стиль жизни - Здоровье!