Электромеханическое и электронное УЗО для квартиры, что лучше?

Принцип работы и правила подключения УЗО

Устройство защитного отключения (УЗО), или дифференциальный автоматический выключатель, – это простое в использовании устройство для защиты человека в быту, реагирующее на дифференциальный ток в проводнике электроэнергии. На сегодняшний день УЗО можно назвать обязательным прибором в наших домах, но сведенья о нем минимальны. Не все понимают истинные преимущества данного прибора, поэтому начнем с главного – с его основных качеств.

Данное устройство необходимо для обеспечения электробезопасности в жилом или рабочем помещении. Если на линии установлен только автомат, защищающий ее от перегрузок, сохраняется опасность поражения током для человека при аварии или касании оголенного провода на все сто процентов. Крайне опасным для человека являются 0,05 А. Это ток, при котором человек не может оторваться от провода самостоятельно. Для того чтобы предотвратить случаи поражения электрическим током, и был придуман данный прибор.

Принцип работы

Через устройство проходит ноль питания и фаза. Таким образом, устройство определяет силу тока на входе и, соответственно, на выходе. Если оба эти показателя равны, то ничего не происходит, но как только произойдет так называемая утечка, УЗО сработает, отключив линию.

Перечислить все случаи, при которых УЗО работает бесперебойно, очень сложно, но для общего понимания картины можно указать наиболее часто встречающиеся из них:

  • неправильный монтаж проводки,
  • пробои на корпус в технике,
  • неверный монтаж в щитке и другие опасные случаи.

Иногда УЗО срабатывает при возникновении заведомо опасной ситуации. Это может случиться, если шланг стиральной машины имеет металлические элементы и при этом подключен к водопроводу.

Правильный выбор устройства

Разобравшись с принципом работы УЗО, нужно научиться правильно выбирать то, что подходит именно вам. Стоит также отметить, что если вы используете УЗО, то это не избавляет вас от покупки и установки автомата. Итак, выбор устройства определяют три важных параметра:

  1. Ток утечки. Это самый важный параметр прибора. В очень влажных помещениях используют УЗО с очень высокой чувствительностью в 10 мА (0,01 А). Для бытового использования подходящим является устройство с током утечки в 30 мА (0,03 А), а УЗО 100 и 300 мА предназначены для установки на ввод в целое здание.
  2. Номинальный ток контактов. Он обозначает номинал тока, который необходим электрику при подборе начинки для щитка. Обозначается он на устройстве цифрами 16, 25, 40 и т. д.
  3. Категория тока утечки. На рынке чаще всего представлены устройства двух типов: А и АС. Стандартным считается тип АС. Такое устройство будет чувствительно к переменному току утечки, что является самым распространенным случаем. Тип А встречается реже, однако он является более чувствительным, поскольку контролирует также пульсирующий ток. По этой причине стоимость устройства типа А несколько выше. Также можно увидеть в продаже устройства типа В для выпрямленного тока (в быту они не используются), типа S для использования в сетях с АВР и типа G для тех же сетей, но с иной временной выдержкой. Типы G и S предназначаются для установки нескольких устройств одновременно.

Если ваш основной вид деятельности никак не связан с электрическими сетями, доверьте подбор устройства профессионалу. Это сэкономит ваши средства и время.

Дифференциальные автоматы, устройства защитного отключения CHINT.

Подключение устройства

Подключение УЗО следует доверить профессионалу. Поскольку нюансов в процессе монтажа много, электромонтер должен иметь как минимум третий разряд. Каждое устройство имеет в комплекте схему подключения. Она довольно проста, специалисту лишь требуется правильно рассчитать количество автоматов на одно устройство. Если речь идет о квартире или о частном доме, как правило, устанавливают автомат и УЗО номиналом выше, чем у автомата. Это правило необходимо для устойчивой работы цепи.

Если требуется установить два защитных устройства, то необходимо исключить объединение нулевых проводников, что заведомо приведет к утечке. Порой щиток комплектуется так, что при установке УЗО размеры его становятся просто огромными. Некоторые электромонтеры разбивают автоматы не только по одному на комнату, но и порой выделяют один из них под какой-либо прибор. В таких случаях возможна установка одного защитного устройства на несколько автоматов. Для этого необходимо точно рассчитать сумму номиналов автоматов и выбрать УЗО номиналом выше этой суммы. Допускается установка УЗО максимум для пяти автоматов.

При правильном подборе УЗО и его грамотной установке оно прослужит вам долгое время и обезопасит от утечки тока.

Особенности эксплуатации УЗО

УЗО рекомендуется использовать в определённых местах:

  • на участках, которые принципиально должны быть безопасными;
  • в зонах, где отключение электроэнергии может стать причиной происшествий средней степени опасности.

В чрезвычайно опасных местах рекомендуется отказаться от подключения УЗО с заземлением. Несмотря на хорошее качество аппарата и его помощь в исключении аварийных ситуаций, он может доставить много хлопот.

При подключении УЗО принципиально важно заизолировать нулевой провод от заземления и нулевых проводов других аналогичных устройств

В большинстве случаев электрики допускают использование устройства защитного отключения с заземлением. Главное — правильно его подключить. УЗО срабатывает только под воздействием тока утечки, показатель которого выше стандартного значения. А искусственно созданное, как и естественное или самодельное заземление, отличает сопротивление, чей уровень не даёт появиться току с необходимым значением. Получается, что в данной ситуации УЗО не сможет действовать.

Другой вариант неверного подключения УЗО заключается в некачественной изоляции выходного нулевого провода относительно «земли». Если нулевой проводник подключить к схеме заземления, УЗО будет постоянно выдавать ложные срабатывания.

Типы УЗО АС, А, В

В зависимости от типа, УЗО обязано отключаться от разного вида утечек тока, есть УЗО, которые отключают только переменный ток, есть УЗО которые переменный и пульсирующий ток:

УЗО тип АС реагирует на мгновенный переменный дифференциальный ток утечки, т.е. это обычные потребители: освещение,  теплые полы, холодильники, конвекторы и др. Тип УЗО АС обозначается на панели, это либо буквы АС, либо специальный символ (пиктограмма) или и то и другое вместе.

УЗО тип А реагирует, как на переменный, так и на пульсирующий ток утечки, который может медленно нарастать или возникать внезапно. Это приборы, в которых используются выпрямители и импульсные блоки питания: компьютеры, стиральные машинки, телевизоры, посудомойки, микроволновки, т.е. там, где всем управляет электроника. В некоторых инструкциях на современные электроприборы отдельно указывается, что необходима установка УЗО типа А. Пиктограмма для УЗО тип А выглядит следующим образом

УЗО тип А дороже, чем УЗО тип АС, т.к. «охватывает» бОльшую зону защиты. Но следует отметить, что уровень защиты с УЗО типа АС выше, чем если бы УЗО не было бы вообще.

ПУЭ 7.1.78. В зданиях могут применяться УЗО типа “А”, реагирующие как на переменные, так и на пульсирующие токи повреждений, или “АС”, реагирующие только на переменные токи утечки. Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и др.

Часто у читателей возникает вопрос: “Какое УЗО поставить на холодильник, стиральную машинку, посудомойку, варочную панель и т.д.?”. Самый правильный ответ, вы найдете в инструкциях на бытовую технику.

Но, например, в Европе разрешено устанавливать УЗО только тип А. УЗО тип АС запрещены.

УЗО тип В – редкость в России, их применяют в промышленности, где помимо прочих видов утечек, есть утечки выпрямленного тока, в быту УЗО тип В не применяют.

Как отличить узо электромеханическое от электронного

Для того чтобы понимать какое устройство защитного отключения перед вами находится электронное или электромеханическое нужно уметь их различать. Многим покажется это трудным, и они скажут, что это под силу только профессионалам. Но уверяю Вас это не так, здесь нет ничего сложного. Достаточно лишь знать некоторые нюансы.

Итак, есть несколько способов, как отличить электромеханическое УЗО от электронного. Изучив их, Вы с уверенностью сможете определять, какой тип УЗО

перед вами. Сейчас рассмотрим подробно каждый из них.

1.Схема изображенная на корпусе УЗО

Первый способ и самый простой это изучить схему, которая изображена на корпусе УЗО. На любом защитном устройстве наносится электрическая схема. Если научиться читать и распознавать эти схемы можно легко определять не только тип устройства. Кстати говоря, если помните, то в статье о том, как отличить УЗО от дифавтомата мы уже сталкивались с подобными схемами. Если присмотреться, то между отображенными схемами на электромеханическом УЗО и электронном

есть небольшие отличия.

На схеме электромеханического УЗО или дифавтомата отображается дифференциальный трансформатор (через который «продеты» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле которое соединено со вторичной обмоткой. Поляризованное реле уже непосредственно действует на механизм отключения. Все это отображено на схеме. Нужно только понять, какой фигурой обозначен каждый вышеописанный элемент.

Дифференциальный трансформатор обозначен в виде овала вокруг фазного и нулевого провода. От него отходит виток вторичной обмотки, который связан с поляризованным реле. На схеме поляризованное реле обозначается в виде прямоугольника или квадрата (в нашем случае это квадрат). Пунктирная линия от реле означает механическую связь со спусковым механизмом отключения.

Еще здесь обозначена кнопка ТЕСТ со своим сопротивлением (сопротивление позволяет создать утечку рассчитанного номинала). Как видите в электромеханическом УЗО нет никаких электронных плат и усилителей. Конструкция состоит из чистой механики.

Теперь рассмотрим электронное УЗО

. Я для примера буду использовать электронный дифавтомат от фирмы IEK марки АВДТ32 С20, с током утечки 30 мА.

Как видно из схемы на корпусе электронного дифавтомата обозначено практически все тоже самое, что и на электромеханическом защитном устройстве.

Но если присмотреться, то можно увидеть что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А». Это та самая электронная плата с усилителем.

Кроме того видно что к этой плате подходят два провода «фаза» и «ноль». Это как раз и есть тот внешний источник питание, который необходим для полноценной работы такого типа УЗО.

Не будет питание, не будет работать и УЗО. Не зависимо от того есть утечка или нет.

2.Внешний источник питания – тест с помощью батарейки.

Второй способ немного сложнее первого, так как при себе нужно иметь дополнительные элементы — батарейку и провода для подключения. Вроде ничего сложного, но согласитесь их не всегда удобно применить, особенно если вы находитесь в магазине. На рынке еще могут вам разрешить ими воспользоваться, но в лидирующих магазинах электронной продукции вам точно в этом откажут (ну какой менеджер согласится, чтобы при нем курочили узо или дифы).

Итак, для теста нам понадобится самая обычная заряженная батарейка, любая (пальчиковая, крона и т.п.) У меня под рукой оказалась батарейка типа крона на 9 В.

Берем электромеханическое УЗО

, к верхней клемме прикручиваем один проводок, к нижней клемме ТОГО ЖЕ ПОЛЮСА прикручиваем другой проводок

Хочу заметить, что абсолютно не важно к какому из полюсов вы будите прикручивать провода к фазному или к нулевому. Но если сверху вы подключили провод на клемму фазного полюса, то и внизу также нужно подключать провод к фазному полюсу иначе не будет замкнутой цепи

Теперь включаем наше УЗО (АВДТ) и замыкаем концы торчащих проводов на батарейку. В момент, когда повода замкнутся на клеммы батарейки, через полюс УЗО начнет протекать ток. УЗО должно отключиться.

Если этого не произойдет, поменяйте полярность батарейки, то есть поменяйте местами полюса «+» и «-». Если УЗО отключится, с уверенностью в 200 % можно сказать что оно электромеханического типа

Электронное УЗО на такой тест ни как не отреагирует, потому что для его срабатывания дополнительно требуется наличие напряжения на электронной плате.

Важность приобретения качественного УЗО

Безответственный подход к выбору устройства защитного отключения, то есть покупка аппарата, который не подходит дому или квартире по характеристикам, может стать причиной определённых проблем:

  • ложного срабатывания автоматики, поскольку небольшие утечки электрического тока — это естественная ситуация для проводки, которая была смонтирована относительно давно;
  • несвоевременного получения информации об опасном происшествии, если выбрано чересчур мощное УЗО, что может привести к поражению электротоком;
  • неспособности УЗО функционировать с имеющейся проводкой из алюминиевых жил, ведь почти все аппараты работают только на медных проводах.

Чтобы не совершить ошибку при выборе УЗО, перед покупкой не мешает внимательно ознакомиться с параметрами аппарата.

Таблица: основные параметры УЗО

Параметр УЗО
Буквенное обозначение
Описание
Дополнительная информация
Номинальное напряжение
Un
Уровень напряжения, который избран производителем аппарата и необходим для его функционирования.
Обычно номинальное напряжение составляет 220 В, иногда — 380 В

Равномерное напряжение в электросети и номинальное напряжение выключателя дифференциального тока, как ещё называют УЗО, — это важное условие беспроблемной работы устройства.
Номинальный ток
In
Наивысшее значение тока, при котором УЗО функционирует в течение длительного периода.
Значение номинального тока может быть следующим: 10, 13, 16, 20, 25, 32, 40, 63, 80, 100 или 125 А. По отношению к дифференциальному автомату эта величина выступает и номинальным током автоматического выключателя в комплектации УЗО

Для дифференциальных автоматов значение номинального тока выбирают из ряда: 6, 8, 10, 13, 16, 20, 25, 32, 40, 63, 80, 100, 125 А.
Номинальный отключающий дифференциальный ток
Idn
Ток утечки.
Эту характеристику устройства защитного отключения считают главной, так как она указывает на то, какая величина дифференциального тока заставит аппарат среагировать. УЗО производят со следующими параметрами номинального отключающего дифференциального тока: 6, 10, 30, 100, 300 и 500 мА.
Номинальный условный ток короткого замыкания
Inc
Показатель, по которому можно судить о надёжности, прочности и качестве УЗО.
Номинальный условный ток короткого замыкания показывает, насколько хорошо выполнены электрические соединения механизма. Величина номинального тока короткого замыкания стандартизована и может быть равна 3000, 4500, 6000 или 10000 А.
Номинальный дифференциальный ток короткого замыкания
IDc
Ещё один показатель качества и надёжности устройства.
Схож с номинальным условным током короткого замыкания. Отличие заключается лишь в том, что сверхток проходит по одному проводнику устройства защитного отключения, а тестирование работы аппарата осуществляется после включения испытательного тока в порядке очереди по разным полюсам УЗО.
Предельное значение неотключающегося сверхтока

Это характеристика, отражающая возможности выключателя дифференциального тока оставлять без внимания симметричные токи короткого замыкания и ситуации, когда сеть перегружена.
Этот показатель не имеет ничего общего со значением тока, при котором устройство защитного отключения обязано блокировать подачу электропитания. Минимальный показатель неотключающегося тока должен соответствовать значению номинального тока нагрузки, увеличенному в 6 раз.
Номинальная включающая и отключающая (коммутационная) способность
Im
Параметр, зависящий от степени технической подготовки УЗО, то есть от мощности пружинного привода, используемого сырья и качества силовых контактов.
Коммутационная способность может быть равна 500 А или величине, в 10 раз превышающей уровень номинального тока
У качественных устройств составляет 1000 или 1500 А.
Номинальная включающая и отключающая способность по дифференциальному току
IDm
Характеристика, которая тоже обусловливается техническим исполнением выключателя дифференциального тока.
Этот параметр сравним с предыдущим (Im), но разнится с ним тем, что во внимание принимается протекание дифференциального тока. Зачастую его оценивают во время короткого замыкания на корпус электроприёмника в системе TN-C-S.

Схема подключения УЗО

Рассмотрим способы установки УЗО в различных сетях.

Однофазная сеть

В таких сетях чаще всего устанавливают однополюсные УЗО.

В однофазных сетях УЗО устанавливается сразу после электросчётчика перед группой автоматических выключателей

В среде профессиональных электриков принято заводить контактные соединения в УЗО и автоматические выключатели только сверху вниз. Мы рекомендуем придерживаться этого правила по следующим причинам:

  • в некоторых моделях таких приборов при подключении снизу увеличиваются потери (снижается КПД устройства);
  • если ремонтными работами в электрощите будет заниматься другой специалист, то при общепринятом способе подключения он не запутается и не ошибётся.

На приведённой схеме общее УЗО (поз. 2) обеспечит противопожарную защиту осветительных цепей (автоматические выключатели на 10 А, поз. 5, 6, 12) и подстрахует прочие УЗО.

Каждое «розеточное» УЗО обслуживает по три группы розеток, оснащённых автоматическими выключателями. Устанавливать УЗО на каждую группу было бы накладно, поэтому предлагается своего рода компромисс: с одной стороны, схема удешевляется за счёт сокращения количества применяемых УЗО, с другой — при срабатывании одного из них будет обесточена не вся сеть, а только её часть.

Обнаружить цепь с утечкой тока будет достаточно просто: если, к примеру, сработает (отключится) УЗО поз. 7, нужно отключить автоматы поз. 8, 9 и 10 (отвечают за группы розеток 2, 3 и 4), затем включить УЗО поз. 7 и по очереди включить упомянутые автоматы. Как только будет включён автомат цепи с утечкой тока, УЗО тут же отключится.

Нулевой проводник после противопожарного УЗО поз. 3 нужно закрепить на общей нулевой шине (поз. 4). Затем от этой шины «ноль» протягивается ко всем остальным УЗО и дифференциальному выключателю. Поскольку дифференциальный выключатель (поз. 13) обслуживает выделенную линию, нулевой проводник после него заводится не на нулевую шину, а прямо на нагрузку.

В данной схеме имеются ещё две нулевые шины — они обозначены позициями 11 и 18. К первой подключаются нулевые проводники УЗО поз. 7 и розеток поз. 2, 3 и 4, а ко второй — нулевые проводники УЗО поз. 14 и розеток 5, 6 и 7. Если бы их не было и все приборы подключались бы только на общую нулевую шину, то при появлении утечки тока в одной из розеточных групп с большой вероятностью могли бы отключиться оба «розеточных» УЗО (поз. 7 и 14) либо общее УЗО (поз. 3).

Нулевые проводники осветительных цепей (автоматы поз. 5, 6 и 12) выводятся на общую нулевую шину (поз. 4), минуя УЗО.

Проводники заземления выводятся на шину РЕ (поз. 19).

Видео: как правильно подключить УЗО

Трёхфазная сеть

В таких сетях у нас чаще всего устанавливают 4-полюсные УЗО. Подключается оно по тому же принципу, что и в однофазной сети.

Учтите, что в УЗО различных производителей нулевая клемма может располагаться как слева, так и справа. Поэтому перед подключением нужно внимательно изучить схему, изображённую на корпусе выключателя или в его паспорте.

Общее трёхфазное УЗО предохраняет цепь только от возгорания, для защиты от поражения электрическим током на каждую фазу устанавливают отдельное устройство

УЗО этого вида (3-фазные 4-полюсные) бывают только противопожарными. Для защиты людей от поражения током на каждой линии нужно дополнительно установить однофазное УЗО с уставкой тока утечки не более 30 мА. При этом у каждой линии должен быть свой нулевой проводник, который выводится к соответствующему УЗО.

Нормы и регламентирующие документы

В статье «Как выполняется тестирование УЗО в лабораторных условиях» мы уже приводили полный список стандартов, используемых для разработки методик проверки УЗО. Здесь же напомним, что эту документацию можно условно разбить на две группы:

  • терминология, базовые нормативы и рекомендуемые методы испытаний;
  • требования по организации процесса измерений.

В данном случае, нормативная информация изложена в стандартах:

  • ГОСТ Р 51326.1-99 (МЭК 61008-1-96) – для устройств контроля токов утечки без защиты от сверхтоков;
  • ГОСТ Р 51327.1-2010 (МЭК 61009-1-2006) – для устройств контроля токов утечки со встроенной защитой от сверхтоков (то есть, для дифференциальных автоматов).

Организационные аспекты испытаний, в том числе и требования к уровню квалификации персонала, рассмотрены в ГОСТ Р 50571.3-2009 (МЭК 60364-4-41:2005).

Как мы уже упоминали во введении, в стандартах рассмотрены все конструктивные параметры устройств, проверка которых в режиме лабораторных проверок обычно не производится.

Так, в пунктах 8.5-8.10 ГОСТ Р 51326.1-99, в числе прочих, перечислены следующие направления проверок:

  • стойкость к механическому удару и толчку;
  • теплостойкость;
  • устойчивость к аномальному нагреву и огню;
  • проверка стойкости маркировки;
  • контроль крутящего момента, с которым затянуты винтовые соединения.

Основная информация, на основании которой делаются экспертные заключения о результатах испытаний, опубликована в 9 разделе этого же стандарта.

Полный список испытаний приведен в заглавной таблице раздела.

Полный список испытаний

Но при разработке технологических карт для электролабораторий используют далеко не все перечисленные алгоритмы, а только те, которые непосредственно относятся к эксплуатационным характеристикам.

Чаще всего таковыми являются:

  • проверка защиты от поражения электрическим током;
  • контроль электроизоляционных свойств устройства;
  • тестирование функциональных характеристик;
  • контроль механической и коммутационной износостойкости.
  • тестирование механизма свободного расцепления;
  • проверка стабильности работы при возникновении кратковременных импульсов напряжения.

Отдельно отметим, что для электронных систем контроля, срабатывание которых зависит от наличия напряжения в контролируемой цепи, необходимо предусмотреть отдельный цикл проверки, отражающий поведение прибора при отсутствии напряжения (должно происходить автоматической отключение)

В ходе профилактических испытаний устройств защитного отключения основное внимание уделяется соответствию фактических время токовых характеристик их нормативным значениям

Источниками «эталонных» данных, с которыми сравниваются измеренные значения, являются перечисленные выше стандарты, а также эксплуатационная документация, поставляемая вместе с прибором.

Кроме этого, при измерениях ориентируются и на общие положения, сформулированные для данного класса приборов.

Так, базовое соотношение номинального тока утечки и номинального неотключающего тока должно быть таким, чтобы размыкание цепи гарантировано происходило при уровнях токов утечки не более 50% от рабочего значения In. То есть, если защитный диапазон УЗО равен 30 мА, то прибор считается исправным, если отключение осуществляется при токах утечки от 15 до 30 мА.

Второй важный параметр – время отключения, зависит от уровня коммутируемых токов и находится в диапазоне от 0.04 до 0.3 секунды.

Время отключения

Кроме электротехнических характеристик, существует ещё один важный параметр, часто игнорируемый при проведении испытаний. Это размеры зазоров между элементами контактных групп и токоведущими частями, проверка которых должна производиться в ходе визуального осмотра, также входящего в алгоритм тестирования.

Отклонение от этого размера легко не заметить, и в итоге это может привести к значительному росту токов утечки самого прибора и, как следствие, ухудшению его эксплуатационных показателей.

В пункте 8.1.3 ГОСТ Р 51326.1-99 приведена подробная таблица с описанием допустимых зазоров, но в общем случае можно ориентировать на правило: зазоры в разомкнутых контактных группах должны быть не менее 3 мм.

В завершение раздела о базовых нормативах, ещё раз подчеркнём, что действующие стандарты разработаны, в первую очередь, для сертификационных испытаний, поэтому циклы испытаний построены таким образом, что какой-то процент испытуемых устройств может прийти в негодность.

Очевидно, что для профилактических электроизмерительных проверок подобный подход неприемлем, и при разработке практических алгоритмов измерений следует учитывать не только общие цели тестирования, но и степень разрушающего воздействия измерительных сигналов.

Схемы подключения ВДТ

Питание (электричество) можно подавать, как на нижние, так и на верхние контакты УЗО – это утверждение относится ко всем ведущим производителям электромеханических УЗО.

Пример из инструкции для УЗО ABB F200

Я разделяю схемы подключения УЗО на 2 вида:

    1. Это стандартная схема подключения, одно УЗО один автомат. Помним, что УЗО выбирается с номинальным током на ступень выше, чем автомат? Если автомат у нас на кабельной линии 25А, то УЗО следует выбрать на 40А. Ниже показан пример схемы подключения УЗО для электроплиты (варочной поверхности).

Но, если у нас квартира или частный дом, где кабельных линий штук 20-30, то щиток у нас по первой схеме подключения будет огромных размеров, да и стоимость его выйдет, как бюджетная иномарка)). Поэтому производителями допускается установка одного УЗО на группу автоматов. Т.е. одно УЗО на несколько автоматов

Но здесь важно соблюдать следующее правило, сумма номинальных токов автоматов не должна превышать номинальный ток УЗО. Если у нас УЗО на три автомата, например автомат 6 А (освещение) + 16 А (розетки в комнате)+16 А (кондиционер) = 38 А

В этом случае мы может выбрать УЗО на 40 А. Но не стоит «навешивать» на УЗО более 5 автоматов, т.к. любая линия имеет естественные утечки тока (соединения кабелей, сопротивления контактов автоматов, розетки и т.д.) в итоге получите сумму утечек, которая превышает ток отключения УЗО, и оно у вас будет периодически срабатывать без видимой на то причины. Или если установить перед УЗО автомат с меньшим номинальным током, то можно “цеплять” к УЗО автоматы, не задумываясь об их номинальных токах, но, конечно, помним, что более 5-ти автоматов подсоединять к УЗО не следует, т.к. сумма естественных утечек тока в кабелях и приборах будет высока, и близка к уставке УЗО. Что приведет к ложным срабатываниям. Из данной схемы видно, что сумма номинальных токов отходящих автоматов 16+16+16=48 А, а УЗО у нас на 40А, но перед УЗО у нас стоит автомат на 25А и в этом случае УЗО у нас защищено от сверхтоков. Данная схема позаимствована из статьи, где я менял автоматы и УЗО в квартирном щитке.

Схема подключения трехфазного электродвигателя

Собственно ничего сложного в этом нет, для корректной работы трехфазного УЗО нулевой проводник мы подключаем на нулевую клемму УЗО со стороны питания, а со стороны двигателя она остается пустая.

УЗО следует проверять не реже, чем 1 раз в месяц. Делается это достаточно просто, достаточно нажать на кнопку “ТЕСТ”, которая есть на любом УЗО.

УЗО обязано отключиться, делать это следует при снятой нагрузке, когда выключены телевизоры, компьютеры, стиральная машинка и т.д., чтобы лишний раз не “дергать” чувствительное оборудование”.

Мне нравятся УЗО АББ, у которых как и у выключателей АББ серии S200, есть индикация включенного (красный цвет) или отключенного (зеленый цвет) положения.

Также, как у выключателей ABB S200, есть по два контакта на каждом полюсе сверху и снизу.

Спасибо за внимание

if (w.opera == «») {
d.addEventListener(«DOMContentLoaded», f, false);
} else { f(); }
})(window, document, «_top100q»);

Принцип действия УЗО достаточно прост:

Рисунок 1. УЗО в нормальном режиме работы.

У УЗО как и у автоматического выключателя есть тумблер для включения (В), являющийся частью механического размыкателя электрической цепи (М). Когда мы включаем тумблер, электрическая цепь замыкается и если к электрической цепи подключен какой либо электроприбор, само собой обладающий некоторым сопротивлением R, то по электрической цепи потечет электрический ток. Проводники, по которым течет ток, а именно фазовый провод (фаза) и нейтральный провод (ноль) проходят черед кольцеобразную катушку (К) суммирующего трансформатора. Пока никаких нарушений нет сила тока I1 = I2, при этом токи направлены противоположно, а это значит, что в обмотке суммирующего трансформатора, показанной на рисунке коричневым цветом, никаких электродвижущих сил (ЭДС) не возникает, строго повинуясь закону Кирхгоффа.

Если происходит обрыв фазного провода или пробой изоляции фазного провода таким образом, что фазный провод замыкает на корпус электроприбора и при этом человек контактирует с корпусом, или по каким-то другим причинам человек касается оголенного фазного провода, то ток начинает уходить «налево». Почему? — Это вопрос другой и рассматривается отдельно, нас сейчас интересует, как на такое событие реагирует УЗО:

Рисунок 2. Срабатывание УЗО при утечке тока.

Когда человек замыкает через себя электрическую цепь, часть тока начинает уходить в землю, а это значит, что сила тока I1 = I2 + Iу. Как частный случай, когда никакой нагрузки, кроме человека нет, I1 = Iу, I2  = 0. Так как I1 ≠ I2, то в обмотке суммирующего трансформатора индуцируется ЭДС, при этом сила тока в обмотке равна силе тока утечки. Размыкатель электрической цепи (Р) реагирует на этот ток утечки, другими словами — разностный или дифференциальный ток — и размыкает цепь. Происходит это очень быстро, в течение 0.025-0.5 секунды. А еще у УЗО есть тестирующий блок, предназначенный для проверки работоспособности устройства. На корпусе любого УЗО есть кнопка, на которой или возле которой есть буква «Т». Если нажать на эту кнопку, когда тумблер УЗО включен, то электронный блок возбуждает в обмотке расчетный ток утечки, при этом должен сработать выключатель и цепь разомкнется. На рисунках тестирующий блок не показан. Рекомендуется проверять работоспособность УЗО раз в месяц.

Провод, идущий от нагрузки электроприбора до УЗО, является нейтральным достаточно условно. Если этот провод при нарушении изоляции замкнет на корпус, или будет поврежден и человек будет касаться корпуса или той части этого провода, которая идет от нагрузки, то эффект будет почти таким же, вот только сила тока, проходящего через человека уменьшится в зависимости от сопротивления электроприбора.

Казалось бы вывод из вышесказанного прост: нужно установить УЗО на DIN-рейку распределительного щита после автоматических выключателей и электросчетчика. Но во многих квартирах счетчик по-прежнему находится в квартире и стоят древние пробкодержатели, в которые вкручены автоматические выключатели или пробки с плавкими предохранителями. В таких случаях просто вставить УЗО в электрическую цепь не получится. Кроме того, так как УЗО реагирует не именно на человека, а на ток утечки, то срабатывать УЗО будет и в других случаях. Например, если бытовые приборы заземлены искусственным или естественным образом и происходит пробой изоляции или обрыв фазного провода с замыканием на корпус, или если изоляция электропроводки в стенах, полу или потолке повреждена. С одной стороны это хорошо, так как может предотвратить пожар при искрении неисправной электропроводки. А с другой стороны, если электропроводка в квартире или доме старая, то утечка тока в такой квартире или доме — обычное дело, и перед тем, как устанавливать УЗО, придется менять всю электропроводку, или устанавливать несколько УЗО с разным порогом чувствительности, или устанавливать УЗО не сразу после счетчика, а перед потенциально опасными электроприборами.

Но даже если на момент установки УЗО с электропроводкой все нормально, то все равно устанавливать одно устройство защитного отключения на всю квартиру, а тем более дом, я бы не советовал. Причина проста: когда УЗО сработает, это означает, что где-то произошла утечка и нужно проверять электрическую цепь по всей квартире. Если на распределительном щитке установлено несколько УЗО, например, одно для розеток в ванной, другое для розеток в кухне, третье для остальных розеток, четвертое для освещения, отдельное УЗО на «теплые полы», если есть и т.д., то при возникновении тока утечки сработает только одно УЗО, и область поиска неисправности значительно уменьшится.

Подобрать нужную модель УЗО поможет следующая информация

Источник: ledsshop.ru

Стиль жизни - Здоровье!