Электродвигатель подъемного крана потребляет ток силой i 20

Вариант 2

1. Сила тока, идущего по проводнику, равна 2 А. Какой заряд проходит по проводнику за 10 минут?

1) 0,2 Кл
2) 5 Кл
3) 20 Кл
4) 1200 Кл

2. При увеличении напряжения U на участке электрической цепи сила тока I в цепи изменяется в соответствии с графиком (см. рисунок). Электрическое сопротивление на этом участке цепи равно

1) 2 Ом
2) 0,5 Ом
3) 2 мОм
4) 500 Ом

3. Если увеличить в 2 раза напряжение между концами проводника, а его длину уменьшить в 2 раза, то сила тока, протекающего через проводник

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображенного на рисунке, равно

1) 11 Ом
2) 6 Ом
3) 4 Ом
4) 1 Ом

5. На цоколе лампы накаливания написано: «150 Вт, 220 В». Найдите силу тока в спирали при включении в сеть с номинальным напряжением

1) 0,45 А
2) 0,68 А
3) 22 А
4) 220 000 А

6. Проволочная спираль, сопротивление которой в нагретом состоянии равно 55 Ом, включена в сеть с напряжением 127 В. Какое количество теплоты выделяет эта спираль за 1 минуту?

1) 17,595 кДж
2) 20 кДж
3) 230 кДж
4) 658,5 кДж

7. Установите соответствие между физическими величинами и единицами измерения этих величин. К каждой позиции первого столбца подберите соответствующую позицию второго.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

А) Сила тока
Б) Сопротивление
В) Работа электрического тока

ЕДИНИЦЫ ИЗМЕРЕНИЯ

1) Джоуль
2) Ватт
3) Вольт
4) Ампер
5) Ом

Запишите выбранные цифры под соответствующими буквами.

8. Электродвигатель подъемного крана подключен к источнику тока напряжением 380 В, при этом сила тока в обмотке 20 А. Определите КПД подъемного крана, если он поднимает груз массой 1 т на высоту 19 м за 50 с.

Вариант 1

1. За 20 минут через утюг проходит электрический заряд 960 Кл. Определите силу тока в утюге.

1) 0,6 А
2) 0,8 А
3) 48 А
4) 1920 А

2. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции?

1) 250 кОм
2) 0,25 Ом
3) 10 кОм
4) 100 Ом

3. Если увеличить в 2 раза напряжение между концами проводника, а площадь его сечения уменьшить в 2 раза, то сила тока, протекающего через проводник

1) увеличится в 2 раза
2) уменьшится в 2 раза
3) не изменится
4) увеличится в 4 раза

4. Сопротивление участка цепи, изображенного на рисунке, равно

1) 3 Ом
2) 5 Ом
3) 8 Ом
4) 21 Ом

5. На штепсельных вилках некоторых бытовых электрических приборов имеется надпись: «6 А, 250 В». Определите максимально допустимую мощность электроприборов, которые можно включать, используя такие вилки.

1) 1500 Вт
2) 41,6 Вт
3) 1,5 Вт
4) 0,024 Вт

6. Чему равно время прохождения тока по проводнику, если при напряжении на его концах 120 В совершается работа 540 кДж? Сопротивление проводника 24 Ом.

1) 0,64 с
2) 1,56 с
3) 188 с
4) 900 с

7. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

ФИЗИЧЕСКАЯ ВЛИЧИНА

А) Сила тока
Б) Напряжение
В) Сопротивление

ФОРМУЛА

1) A/q
2) I2R
3) ρl/S
4) IUt
5) q/t

Запишите выбранные цифры под соответствующими буквами.

8. С помощью кипятильника, имеющего КПД 90%, нагрели 3 кг воды от 19 °С до кипения за 15 минут. Какой ток при этом потреблял кипятильник в сети напряжением 220 В? Удельная теплоемкость воды 4200 Дж/(кг·°С).

4 вариант

1. Ток в электронагревательном приборе 5 А. Чему равен заряд, который пройдет через нагреватель за 3 минуты?

1) 15 Кл
2) 36 Кл
3) 900 Кл
4) 3600 Кл

2. На рисунке изображён график зависимости силы тока в проводнике от на­пряжения на его концах. Чему равно сопротивление проводника?

1) 0,125 Ом
2) 2 Ом
3) 16 Ом
4) 8 Ом

3. Если напряжение между концами проводника и его длину уменьшить в 2 раза, то сила тока, протекающего через проводник,

1) уменьшится в 2 раза
2) не изменится
3) увеличится в 2 раза
4) уменьшится в 4 раза

4. Рассчитайте общее сопротив­ление участка цепи, изобра­жённого на рисунке, если со­противление каждого элемента цепи равно 1 Ом.

1) 3 Ом
2) 2 Ом
3) 1,5 Ом
4) 1/3 Ом

5. При силе тока 0,6 А сопротивление лампы равно 5 Ом. Определите мощность электрического тока лампы.

1) 0,06 Вт
2) 1,8 Вт
3) 3 Вт
4) 15 Вт

6. Чему равно напряжение на концах проводника, если при прохождении по нему электрического тока 4 А в течение 7,5 минут выделяется 216 кДж теплоты?

1) 0,12 В
2) 7,2 В
3) 120 В
4) 7200 В

7. Установите соответствие между физическими величи­нами и единицами измерения этих величин.
К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Напряжение
В) Мощность

Единицы измерения

1) Джоуль
2) Ампер
3) Вольт
4) Ватт
5) Ом

8. Троллейбус движется равномерно по горизонтальному участку пути со скоростью 36 км/ч. Сила сопротивле­ния, действующая на троллейбус, равна 2,2 кН. Найди­те силу тока в обмотке двигателя, если напряжение на клеммах двигателя 550 В, а КПД равен 80% .

Ответы на контрольную работу по физике Постоянный ток1 вариант
1-2
2-1
3-3
4-3
5-1
6-4
7-513
8. ≈ 5,73 А2 вариант
1-4
2-4
3-3
4-3
5-2
6-1
7-451
8. 50%3 вариант
1-1
2-4
3-2
4-4
5-2
6-2
7-431
8. ≈ 3,73 А4 вариант
1-3
2-4
3-2
4-3
5-2
6-3
7-234
8. 50 А

2 вариант

1. Сила тока, идущего по проводнику, равна 2 А. Какой заряд проходит по проводнику за 10 минут?

1) 0,2 Кл
2) 5 Кл
3) 20 Кл
4) 1200 Кл

2. При увеличении напряжения U на участке электрической цепи сила тока I в цепи изменяется в соответ­ствии с графиком (см. рисунок). Электрическое сопротивление на этом участке цепи равно

1) 2 Ом
2) 0,5 Ом
3) 2 мОм
4) 500 Ом

3. Если увеличить в 2 раза напряжение между концами проводника, а его длину уменьшить в 2 раза, то сила тока, протекающего через проводник,

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображённого на рисунке, равно

1) 11 Ом
2) 6 Ом
3) 4 Ом
4) 1 Ом

5. На цоколе лампы накаливания написано: «150 Вт, 220 В». Найдите силу тока в спирали при включении в сеть с номинальным напряжением

1) 0,45 А
2) 0,68 А
3) 22 А
4) 220000 А

6. Проволочная спираль, сопротивление которой в нагре­том состоянии равно 55 Ом, включена в сеть с напря­жением 127 В. Какое количество теплоты выделяет эта спираль за 1 минуту?

1) 17,595 кДж
2) 20 кДж
3) 230 кДж
4) 658,5 кДж

7. Установите соответствие между физическими величи­нами и единицами измерения этих величин.
К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Сопротивление
В) Работа электрического тока

Единицы измерения

1) Джоуль
2) Ватт
3) Вольт
4) Ампер
5) Ом

8. Электродвигатель подъёмного крана подключён к ис­точнику тока напряжением 380 В, при этом сила тока в обмотке 20 А. Определите КПД подъёмного крана, если он поднимает груз массой 1 т на высоту 19 м за 50 с.

1 вариант

1. За 20 минут через утюг проходит электрический заряд 960 Кл. Определите силу тока в утюге.

1) 0,6 А
2) 0,8 А
3) 48 А
4) 1920 А

2. На рисунке изображён график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции?

1) 250 кОм
2) 0,25 Ом
3) 10 кОм
4) 100 Ом

3. Если увеличить в 2 раза напряжение между концами проводника, а площадь его сечения уменьшить в 2 раза, то сила тока, протекающего через проводник,

1) увеличится в 2 раза
2) уменьшится в 2 раза
3) не изменится
4) увеличится в 4 раза

4. Сопротивление участка цепи, изображённого на рисунке, равно

1) 3 Ом
2) 5 Ом
3) 8 Ом
4) 21 Ом

5. На штепсельных вилках некоторых бытовых электриче­ских приборов имеется надпись: «6 А, 250 В». Опреде­лите максимально допустимую мощность электроприбо­ров, которые можно включать, используя такие вилки.

1) 1500 Вт
2) 41,6 Вт
3) 1,5 Вт
4) 0,024 Вт

6. Чему равно время прохождения тока по проводнику, если при напряжении на его концах 120 В совершается работа 540 кДж? Сопротивление проводника 24 Ом.

1) 0,64 с
2) 1,56 с
3) 188 с
4) 900 с

7. У становите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Напряжение
В) Сопротивление

Формула

1) A/q
2) I2 · R
3) ρl/S
4) I · U · t
5) q / t

8. С помощью кипятильника, имеющего КПД 90%, нагре­ли 3 кг воды от 19 °С до кипения за 15 минут. Какой ток при этом потреблял кипятильник в сети напряжением 220 В? Удельная теплоёмкость воды 4200 Дж/(кг · °С).

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

P1 (кВт) Входная электрическая мощность насосов — это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Вариант 4

1. Ток в электронагревательном приборе 5 А. Чему равен заряд, который пройдет через нагреватель за 3 минуты?

1) 15 Кл
2) 36 Кл
3) 900 Кл
4) 3600 Кл

2. На рисунке изображен график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,125 Ом
2) 2 Ом
3) 16 Ом
4) 8 Ом

3. Если напряжение между концами проводника и его длину уменьшить в 2 раза, то сила тока, протекающего через проводник

1) уменьшится в 2 раза
2) не изменится
3) увеличится в 2 раза
4) уменьшится в 4 раза

4. Рассчитайте общее сопротивление участка цепи, изображенного на рисунке, если сопротивление каждого элемента цепи равно 1 Ом.

1) 3 Ом
2) 2 Ом
3) 1,5 Ом
4) 1/3 Ом

5. При силе тока 0,6 А сопротивление лампы равно 5 Ом. Определите мощность электрического тока лампы.

1) 0,06 Вт
2) 1,8 Вт
3) 3 Вт
4) 15 Вт

6. Чему равно напряжение на концах проводника, если при прохождении по нему электрического тока 4 А в течение 7,5 минут выделяется 216 кДж теплоты?

1) 0,12 В
2) 7,2 В
3) 120 В
4) 7200 В

7. Установите соответствие между физическими величинами и единицами измерения этих величин. К каждой позиции первого столбца подберите соответствующую позицию второго.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

А) Сила тока
Б) Напряжение
В) Мощность

ЕДИНИЦЫ ИЗМЕРЕНИЯ

1) Джоуль
2) Ампер
3) Вольт
4) Ватт
5) Ом

Запишите выбранные цифры под соответствующими буквами.

8. Троллейбус движется равномерно по горизонтальному участку пути со скоростью 36 км/ч. Сила сопротивления, действующая на троллейбус, равна 2,2 кН. Найдите силу тока в обмотке двигателя, если напряжение на клеммах двигателя 550 В, а КПД равен 80%.

Ответы на контрольную работу по физике Постоянный ток 8 классВариант 1
1-2
2-1
3-3
4-3
5-1
6-4
7. А5 Б1 В3
8. ≈5,73 АВариант 2
1-4
2-4
3-3
4-3
5-2
6-1
7. А4 Б5 В1
8. 50%Вариант 3
1-1
2-4
3-2
4-4
5-2
6-2
7. А4 Б3 В1
8. ≈3,73 АВариант 4
1-3
2-4
3-2
4-3
5-2
6-3
7. А2 Б3 В4
8. 50 А

3 вариант

1. Время разряда молнии равно 3 мс. Сила тока в канале молнии около 30 кА. Какой заряд проходит по каналу молнии?

1) 90 Кл
2) 0,1 мкКл
3) 90 кКл
4) 0,1 мКл

2. На рисунке изображён гра­фик зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 8 Ом
4) 4 Ом

3. Если уменьшить в 2 раза напряжение между концами проводника, а его длину увеличить в 2 раза, то сила то­ка, протекающего через проводник,

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображенного на рисунке, равно

1) 9 Ом
2) 8 Ом
3) 4 Ом
4) 3 Ом

5. На корпусе электродрели укреплена табличка с надпи­сью: 220 В, 500 Вт. Найдите силу тока, потребляемо­го электродрелью при включении в сеть.

1) 55 000 А
2) 2,27 А
3) 1,14 А
4) 0,88 А

6. Какую работу совершит электрический ток в течение 2 минут, если сила тока в проводнике 4 А, а его сопро­тивление 50 Ом?

1) 1600 Дж
2) 96 кДж
3) 24 кДж
4) 400 Дж

7. Установите соответствие между физическими величи­нами и формулами, по которым эти величины
определяются. К каждой позиции первого столбца подберите соответ­ствующую позицию второго.

Физическая величина

А) Сила тока
Б) Напряжение
В) Сопротивление

Формула

1) (ρl)/S
2) I2 · R
3) A/q
4) q/t
5) I · U · t

8. Кипятильник нагревает 1,2 кг воды от 12 °С до кипения за 10 минут. Определите ток, потребляемый кипятиль­ником, если он рассчитан на напряжение 220 В. КПД кипятильника 90%. Удельная теплоёмкость воды 4200 Дж/(кг · °С).

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Вариант 3

1. Время разряда молнии равно 3 мс. Сила тока в канале молнии около 30 кА. Какой заряд проходит по каналу молнии?

1) 90 Кл
2) 0,1 мкКл
3) 90 кКл
4) 0,1 мКл

2. На рисунке изображен гра­фик зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 8 Ом
4) 4 Ом

3. Если уменьшить в 2 раза напряжение между концами проводника, а его длину увеличить в 2 раза, то сила то­ка, протекающего через проводник

1) не изменится
2) уменьшится в 4 раза
3) увеличится в 4 раза
4) увеличится в 2 раза

4. Сопротивление участка цепи, изображенного на рисунке, равно

1) 9 Ом
2) 8 Ом
3) 4 Ом
4) 3 Ом

5. На корпусе электродрели укреплена табличка с надпи­сью: 220 В, 500 Вт. Найдите силу тока, потребляемого электродрелью при включении в сеть.

1) 55 000 А
2) 2,27 А
3) 1,14 А
4) 0,88 А

6. Какую работу совершит электрический ток в течение 2 минут, если сила тока в проводнике 4 А, а его сопротивление 50 Ом?

1) 1600 Дж
2) 96 кДж
3) 24 кДж
4) 400 Дж

7. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответствующую позицию второго.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

А) Сила тока
Б) Напряжение
В) Сопротивление

ФОРМУЛА

1) ρl/S
2) I2R
3) A/q
4) q/t
5) IUt

Запишите выбранные цифры под соответствующими буквами.

8. Кипятильник нагревает 1,2 кг воды от 12 °С до кипения за 10 минут. Определите ток, потребляемый кипятиль­ником, если он рассчитан на напряжение 220 В. КПД кипятильника 90%. Удельная теплоемкость воды 4200 Дж/(кг·°С).

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Источник: ledsshop.ru

Стиль жизни - Здоровье!