Электродинамическое действие электрического тока

Электробезопасность

Предупреждение по электробезопасности

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • »безопасным» считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • »минимально ощутимый» человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
  • пороговым »неотпускающим» называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
  • »фибрилляционным порогом» называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Опасность поражения электрическим током или последствия удара током

  • Тепловое воздействие: электрическая энергия, встречая сопротивление с тканями организма, переходит в тепловую энергию и вызывает электрические ожоги. Главным образом ожоги возникают в месте входа и выхода тока, то есть в местах наибольшего сопротивления. В результате чего образуются так называемые метки или знаки тока. Тепловая энергия, преобразованная из электрической, на своем пути разрушает и изменяет ткани.
  • Электрохимическое воздействие: «склеивание», сгущение клеток крови (тромбоцитов и лейкоцитов), перемещение ионов, изменение зарядов белков, образование пара и газа, придание тканям ячеистый вид и др.
  • Биологическое действие: нарушение работы нервной системы, нарушение проводимости сердца, сокращение скелетной мускулатуры сердца и др.

Напряжение и сила тока в опасных помещениях. Основные моменты использования безопасного напряжения в быту

Действие электрического тока на организм

Большое значение в исходе поражения имеет путь, проходимый током в теле человека. Поражение будет более тяжелым, если на пути тока оказываются сердце, грудная клетка, головной и спинной мозг. Наиболее опасными путями прохождения тока через человека являются: рука-ноги, рука-рука.

Поражение электричеством может иметь место в следующих формах:

  • остановка сердца или дыхания при прохождении электрического тока через тело
  • электроожог
  • механическая травма из-за сокращения мышц под действием тока
  • ослепление электрической дугой

Повреждения от электрического тока определяются силой тока и длительностью его воздействия. Чем меньше сопротивление человеческого тела, тем выше ток. Сопротивление уменьшается под действием следующих факторов:

  • высокое напряжение
  • влажность кожи
  • длительное время воздействия
  • повышение содержания углекислого газа в воздухе
  • высокая температура воздуха
  • беспечность, психическая и психологическая неподготовленность к возможному электрическому удару

Больше всего от действия электрического тока страдает центральная нервная система. Из-за повреждения ее нарушается дыхание и сердечная деятельность. Участки тела с наименьшим сопротивлением (т.е. более уязвимые):

  • боковые поверхности шеи, виски
  • тыльная сторона ладони, поверхность ладони между большим и указательным пальцами
  • рука на участке выше кисти
  • плечо, спина
  • передняя часть ноги

Электроожоги излечиваются значительно труднее обычных термических. Некоторые последствия электротравмы могут проявиться через несколько часов, дней, месяцев. Пострадавший должен длительное время жить в «щадящем» режиме и находиться под наблюдением специалистов.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

АО ДГК | Об опасности электрического тока Вторичные обмотки понижающих трансформаторов, обязательно должны быть занулены, и подключаться к заземляющему контуру помещения, установки или электрооборудования. Спрашивайте, я на связи!

Химическое действие тока в жидкостях

Как можно на опыте пронаблюдать химическое действие тока? Вернемся к предыдущему опыту и более внимательно приглядимся к электродам, опущенным в воду (рисунок 4).

Рисунок 4. Химическое действие тока в воде

Мы увидим, что даже в обычной воде вокруг электродов образуются мелкие пузырьки газа. Они не могут возникнуть сами по себе. Значит, происходит какая-то химическая реакция. 

Обратите внимание, что здесь речь идет не о кипении, где мы ранее наблюдали образование пузырьков. Сами электроды еле теплые, мы можем спокойно потрогать их руками

Температура воды тоже далека от ее температуры кипения. Получается, что наличие этих пузырьков — это результат химических реакций, происходящих в воде, при пропускании через нее электрического тока.

Проведем еще один опыт, который более наглядно продемонстрирует нам химическое действие тока.

Заменим воду в сосуде из прошлого опыта на раствор медного купороса $CuSO_4$. Он имеет голубо-зеленоватый цвет. Металлические электроды заменим угольными (рисунок 5).

Рисунок 5. Химическое действие тока в растворе медного купороса

Замкнем ключ. По цепи пойдет ток. А теперь внимательно взглянем на электрод, соединенный с отрицательным полюсом источника тока. На нем образовался красноватый налет.

Что это? Откуда он взялся? Это чистая медь $Cu$. Под действием тока она выделилась из сложного соединения и отложилась на отрицательном электроде.

Это действие тока активно применяется на практике в электрометаллургии для получении чистых металлов без каких-либо примесей (рисунок 6).

Рисунок 6. Детальная иллюстрация химического действия тока

Эту методику применяют для нанесения на поверхность различных предметов тонким слоем никеля, серебра, золота. Это придает предметам красивый эстетический вид и защищает их от преждевременного ржавления.

{«questions»:,»answer»:}}}]}

ЧаВо. В чем разница между магнитной и электромагнитной системами нагрузки?

Подсказка:

Если вам некогда читать, просто посмотрите видео Сразу оговоримся, что информация так же актуальна для велотренажеров, велоэргометров и других тренажеров, имеющих маховик. Исходя из системы нагружения маховика, различают следующие виды:

  1. Механическая
  2. Магнитная с ручной регулировкой
  3. Магнитная с электронной регулировкой
  4. Электромагнитная

Механическая (ременная) система нагружения

Наиболее простая система. Принцип действия следующий: вокруг маховика натягивается ремень и, путем изменения натяжения, достигается изменение нагрузки на маховик. Основные недостатки тренажеров с такой системой нагрузки — высокая шумность работы, отсутствие возможности установить программу тренировок, простой мини-компьютер. Единственный плюс – это низкая цена. Но не стоит забывать, что скупой платит дважды.

Магнитная система нагружения

В тренажерах с магнитной системой нагружения элементом, создающим нагрузку, является постоянный магнит. Интенсивность нагрузки регулируется путем изменения расстояния между магнитом и маховиком, т.е. изменением влияния магнита на маховик. Бывает с ручной и электронной регулировкой.

Ручная регулировка

Ручная регулировка нагружения означает, что уровень сопротивления необходимо регулировать вручную, вращая специальный регулятор нагрузки, который, в свою очередь, перемещает магнит ближе или дальше от маховика. Используется в недорогих, более простых моделях тренажеров.

Минусы

Отсутствуют программы тренировки Громко щелкают при переключении

Плюсы

Дешевле электрических Не требуют подключения в сеть

Например, подобная система используется в Oxygen Tornado II EL.

Подсказка:

Быстро отличить такой тренажер можно по круглой рукоятке на вертикальной стойке

Электронная регулировка

Электронная регулировка нагружения позволяет менять уровень нагрузки (сопротивления) с помощью компьютера на тренажере. Это возможно за счет сервопривода (маленький двигатель, с помощью которого меняется расстояние от вращающегося маховика). Это более современная и технологически продвинутая система нагружения, чем механическая или ручная магнитная. Помимо регулировки уровня нагрузки, есть возможность также использовать встроенные программы тренировок.

В Hasttings DRE20 именно такая.

Электромагнитные системы сопротивления используются в более современных и дорогих эллиптических тренажерах. Эта система является наиболее плавной и тихой и дает возможность управлять заданным в ваттах сопротивлением в небольших интервалах (обычно 5 Вт). Тренажеры с такой системой нагружения не имеют механических элементов в системе управления, поэтому требуют обязательного подключения к электросети. Компьютеры тренажеров с электромагнитной системой нагружения обычно имеют более продвинутый компьютер, который позволяет отслеживать не только пройденную дистанцию, уровень нагрузки, время тренировки, количество затраченных калорий, но и предлагают пользователю ряд встроенных программ тренировок, позволяющих тренировать различные группы мышц и разнообразить занятия. Представитель этой категории — Hasttings DRE60.

Задания

Задание №1

Рассмотрите рисунок 8, на котором изображена установка для наблюдения магнитного действия тока. Что представляет собой каждая часть этой установки? Расскажите, как протекает опыт.

В верхней части рисунка изображен источник тока. К его положительному полюсу подсоединена проволока в изолирующем материале (провод). Далее этот провод намотан на обычный железный гвоздь. От гвоздя провод тянется до ключа, а от ключа до источника тока (его отрицательного полюса).

На рисунке ключ замкнут. В цепи течет электрический ток. Железный гвоздь моментально намагничивается — становится магнитом. Он притягивает к себе другие мелкие железные предметы.

Как только мы разомкнем цепь, по проводам перестанет идти ток. Железный гвоздь размагнитится. Все мелкие предметы, ранее примагниченные к нему, отпадут.

Задание №2

По рисункам 9 и 10 расскажите, как на опыте наблюдают взаимодействие рамки с током и магнита.

Соберем электрическую цепь из источника тока, ключа, соединительных проводов и рамки с обмоткой из тонкой проволоки, соединенной с проводами. Рамку подвесим на нитях, чтобы была возможность отслеживать любое ее движение.

Замкнем ключ. По цепи пойдет ток. Рамка при этом останется неподвижной.

Теперь возьмем магнит. Поместим его так, чтобы рамка оказалась между его полюсами. Снова замкнем цепь. Теперь рамка пришла в движение — она начала поворачиваться. 

Так проявляется магнитное действие электрического тока. Именно это явление используется в устройстве гальванометра.

Электрические токи в природе

Молния

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Тепловое действие тока в жидкостях и газах

Проволока в опыте выше представляла собой твердое тело. А будет ли проявляться тепловое действие тока в жидкостях или газах? Будет!

Для этого проведем следующий опыт. Возьмем сосуд с обычной водой и опустим туда две металлические пластины (рисунок 3). Присоединим их с помощью проводов к источнику тока.  Теперь эти пластины будут являться электродами.

Опустим в воду термометр и зафиксируем температуру. Замкнем ключ, и по цепи пойдет электрический ток.

Рисунок 3. Тепловое действие тока в жидкости

Через 10-15 секунд вы уже увидите, что столбик термометра пополз вверх. Температура воды стала увеличиваться.

Как это можно объяснить? Электрическое поле заставляет электроны двигаться в определенном направлении. Их скорость увеличивается. Значит, увеличивается и их кинетическая энергия ($E_к = frac{m upsilon^2}{2}$).

При своем движении эти электроны будут неизбежно сталкиваться с другими частицами вещества (в нашем случае — воды). При столкновении они будут передавать часть своей энергии этим частицам. Значит, при прохождении тока через воду ее частицы получают какую-то дополнительную энергию. Общая внутренняя энергии воды увеличивается. А вы знаете, что именно это и приводит к повышению температуры.

Опыт, подтверждающий тепловое действие тока в воздухе, мы проделывать не будем, по причине его большой сложности. В общем, явлений, где проявляется тепловое действие тока в воздухе очень мало. Но, например, молния — наглядное природное явление, где  тепловое действие тока тоже заметно.

{«questions»:,»answer»:}}}]}

Резюме

  • Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеивания мощности при прохождении через электрическое сопротивление тела.
  • Тетанус (оцепенение, судороги) – это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения через тело внешнего электрического тока. Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что пострадавший не может отпустить проводник под напряжением, жертва считается «зависшей в цепи».
  • Электрический ток аналогичным образом воздействует на диафрагму (легкие) и сердечные мышцы. Даже слишком слабые, чтобы вызвать оцепенение, токи могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не биться.
  • Постоянный ток (DC) с большей вероятностью вызовет оцепенение в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью заставит пострадавшего «замереть» в случае электрического удара. Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца пострадавшего, что является более опасным состоянием после прекращения действия электрического тока.

Электродинамическое действие — ток

Многопстлевое yci — ройство контактного соединения, примененное в выключателях изготовления заводов ВНИИЭлектроапиараг.

Электродинамическое действие тока в контакте можно значительно усилить путем применения многопетлевых устройств.

Соприкосновение двух контактных поверхностей ( в сильно увеличенном виде.

Электродинамическое действие тока заключается в том, что каждый элемент токоведущей системы, обтекаемый током, испытывает механические усилия от другого элемента той же системы, которые стремятся его деформировать в направлении, перпендикулярном направлению тока в этом элементе.

Термическое и электродинамическое действия тока при коротком замыкании сопровождаются резким понижением напряжения в электрических сетях. Перегреваются токоведущие части и плавятся проводники, возникают электрические искры и дуги, повреждается и воспламеняется изоляция, воспламеняя в свою очередь окружающую среду.

Приемник 4 служит для наблюдения электродинамического действия тока. С этой целью гибкий провод 4 закреплен в зажимах так, что образует узкую петлю. Когда цепь тока замкнута, то вследствие электродинамического отталкивания сторон петля существенно расширяется.

В методах расчета замкнутых контактов, основанных на электродинамическом действии тока, учитывается уменьшение контактного давления вследствие возникновения электродинамических сил сужения.

Из сказанного следует, что все устанавливаемое электрооборудование следует выбирать с учетом термических и электродинамических действий токов короткого замыкания.

Автоматическое деление системы решает задачу ограничения отключаемого тока, однако выключатели и другое оборудование подвергаются электродинамическому действию начального неограниченного тока КЗ.

Провода воздушных линий, за исключением подходов к подстанциям, где при мощностях короткого замыкания более 2 5 млн. ква может возникнуть необходимость предупредить схлестывание проводов при электродинамическом действии токов короткого замыкания.

Как известно, протекание тока по двум параллельным проводникам вызывает их механическое взаимодействие, при этом в зависимости от направления тока эти проводники взаимно притягиваются или отталкиваются. Это взаимодействие называется электродинамическим действием тока, сила которого будет тем больше, чем больше ток и меньше расстояние между проводниками.

Как известно, протекание тока по двум параллельным проводникам вызывает их механическое взаимодействие, при этом в зависимости от направления тока эти проводники взаимно притягиваются или отталкиваются. Это взаимодействие называют электродинамическим действием тока, сила которого будет тем больше, чем больше ток и меньше расстояние между проводниками.

Так как в каждом из рассмотренных выше методов расчета замкнутых контактов на устойчивость не учитывались все факторы, определяющие ток сваривания, то при расчетах устойчивости контактов может быть использован следующий способ. Определяется величина тока сваривания, исходя из термического и электродинамического действия тока. Если полученные значения сильно отличаются друг от друга, то за ток устойчивости принимается меньшее из полученных значений.

Из электротехники известно, что два параллельных проводника взаимно отталкиваются, если токи в них имеют разные направления, и, наоборот, взаимно притягиваются, если токи в них имеют одинаковое направление. Это взаимное отталкивание или притяжение проводников под действием электрического тока носит название электродинамического действия тока.

Бетонный реактор РБ-10, смонтированный в колонку.

Классификация

Постоянный и переменный ток

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический »ток проводимости». Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют »конвекционным».

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи Фуко

Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Что положено в основу выбора режима нейтрали?

Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности.

При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.

Существующее мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статистические данные указывают, что по условиям надежности работы обе сети практически одинаковы.

При напряжении выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ — заземленную.

Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так и с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Воздействие электрического тока на человека.

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом. .

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое, биологическое, световое воздействие.

Термическое воздействие тока характеризуется нагревом кожи и тканей до высокой температуры вплоть до ожогов.

Электролитическое воздействие заключается в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие проявляется в раздражении и возбуждении живых тканей и сопровождается судорожными сокращениями мышц.

Световое действие приводит к поражению слизистых оболочек глаз. Имея дело с физикой (описывающей поведение движущихся зарядов) и физиологией (описывающей реакцию живого тела на движущийся заряд), нельзя оперировать «логикой», в которой участвуют не конкретные значения физических величин, а «очень много» «очень мало» и так далее.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

Начнем с того, что вообще убивает в случае поражения током. Чтобы наступила смерть от электрического тока, нужно выполнение определенных условий (как минимум, одного): остановка сердца (вызванная сокращением мышцы под действием протекающего через нее тока), необратимое поражение нервной системы, глубокий ожог тканей.

Эти же факторы в разных комбинациях влияют на поражение нервной системы и ожоги. В историях с поражением молнией всегда остается вопрос, а шел ли ток через тело, или по его поверхности, либо вообще только «по касательной» (мокрая не очень чистая одежда имеет меньшее сопротивление, да и механизм течения токов такого высокого напряжения заслуживает отдельной статьи).

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

В популярной форме этот закон можно сформулировать следующим образом: чем выше напряжение при одном и том же сопротивлении, тем выше сила тока и в то же время чем выше сопротивление при одном и том же напряжении, тем ниже сила тока.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Анализ опасности поражения током в различных электрических сетях
Поскольку сопротивление нейтрали Ro обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Преподавателям — Россети Урал Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь. Спрашивайте, я на связи!

Источник: ledsshop.ru

Стиль жизни - Здоровье!