Электрический ток в газах газовые разряды виды газовых разрядов плазма

Плазма

Плазма — это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре.

Плазма встречается:
ионосфера — слабо ионизированная плазма,
Солнце — полностью ионизированная плазма;
пламя — ионизированный газ, состоит из нейтральных атомов, положительных ионов и электронов; является как бы смесьью трех газов: атоного, ионного и электронного;
искусственная плазма — в газоразрядных лампах.

Плазма бывает:

Низкотемпературная — при температурах меньше 100 000К (пример — пламя);высокотемпературная — при температурах больше 100 000К (пример — Солнце).

Основные свойства плазмы:
— высокая электропроводность
— сильное взаимодействие с внешними электрическими и магнитными полями.

При температуре

любое вещество находится в состоянии плазмы.

Интересно:
Плазма — это основное состояние вещества во Вселенной.
Радиационные пояса Земли представляют собой плазму.
.

Следующая страница «Контрольные вопросы к зачету по теме: Электрический ток в различных средах»

Назад в раздел «10-11 класс»

Электрический ток в различных средах — Класс!ная физика

Электронная проводимость металлов. Зависимость сопротивления проводника от температуры. Сверхпроводимость —
Электрический ток в полупроводниках. Р-n переход. Полупроводниковые приборы —
Электрический ток в вакууме. Вакуумный диод. Электронно-лучевая трубка —
Электрический ток в жидкостях. Закон электролиза —
Электрический ток в газах —
Контрольные вопросы к зачету по теме: Электрический ток в различных средах

Понятие плазмы

Плазма представляет собой полностью либо частично ионизированный газ, в котором плотность противоположно заряженных частиц примерно одинакова. Для определения степени ионизации (α) используется следующая формула: α = Ni / N. Здесь Ni представляет собой число ионизированных атомов, а N — общее количество частиц.

Примером слабо ионизированной плазмы является ионосфера Земли. Звезды, включая Солнце, плотно ионизированы. Плазма обладает рядом уникальных свойств, что делает необходимым рассматривать ее в качестве особого состояния веществ, таких как, например, жидкость.

Сегодня сложно представить человеческую цивилизацию без электричества. С его помощью люди освещают и обогревают дома, отправляют сообщения и т. д. Применение электрического тока в газах многообразно. Например, газовый электроток используется для освещения помещений, при сварке, в металлургии и т. д. Если управлять движением плазмы, то ее можно использовать в качестве рабочего тела. Так, несколько лет назад большой популярностью пользовались плазменные телевизоры.

Характеристики и физические свойства материалов

Параметры проводников определяют область их применения. Основные физические характеристики:

  • удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
  • температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
  • теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
  • контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
  • временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.

При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.

Свойства, характеризующие проводник:

  • электрические — сопротивление и электропроводимость;
  • химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
  • физические — плотность, температура плавления.

Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:

  • диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
  • удельное объёмное сопротивление;
  • электрическая прочность;
  • тангенс угла диэлектрических потерь.

Изоляционные материалы характеризуются по следующим параметрам:

  • электрические — величина пробивного напряжения, электрическая прочность;
  • физические — термостойкость;
  • химические — растворимость в агрессивных средствах, влагостойкость.

2.Ионизация и рекомбинация

Газ, находящийся при нормальных условиях, состоит
практически из нейтральных молекул, поэтому, крайне плохо проводит
электрический ток. Однако при внешних воздействиях от атома может оторваться
электрон и появляется положительно заряженный ион. Кроме того, электрон может
присоединиться к нейтральному атому и образовать отрицательно заряженный ион.
Таким образом, можно получить ионизованный газ, т.е. плазму.

К внешним воздействиям относятся нагрев, облучение
энергичным фотоном, бомбардировка другими частицами и сильные поля, т.е. те же
условия, которые необходимы для элементарной эмиссии.

Электрон в атоме находится в потенциальной яме, и
чтобы вырваться оттуда, необходимо атому сообщить дополнительную энергию,
которая называется энергией ионизации.

Вещество Энергия ионизации, эВ
Атом водорода 13,59
Молекула водорода 15,43
Гелий 24,58
Атом кислорода 13,614
Молекула кислорода 12,06

Наряду с явлением ионизации наблюдается и явление
рекомбинации, т.е. объединение электрона и положительного иона в нейтральный
атом. Данный процесс происходит с выделением энергии, равной энергии ионизации.
Эта энергия может пойти на излучение или на нагрев. Локальный нагрев газа
приводит к локальному изменению давления, что в свою очередь приводит к
появлению звуковых волн. Таким образом, газовый разряд сопровождается
световыми, тепловыми и шумовыми эффектами.

§ 36. Электрический ток в газах. Плазма

Виды самостоятельного газового разряда и их применение. В зависимости от напряжённости электрического поля, давления газа, формы и вещества электродов различают следующие виды самостоятельного газового разряда: тлеющий, дуговой, коронный и искровой.

Тлеющий разряд характеризуется небольшой силой тока (десятки миллиампер), относительно высоким напряжением (десятки и сотни вольт), низким давлением газа (десятые доли миллиметра ртутного столба). Тлеющий разряд широко используют в различных газосветных трубках (рис. 206), применяемых для световой рекламы и декораций, лампах дневного света (рис. 207), неоновых лампах.

Рис. 206 Рис. 207

Дуговой разряд представляет собой столб ярко светящегося газа (рис. 208). Он характеризуется большой силой тока (десятки и сотни ампер) и сравнительно небольшим напряжением (несколько десятков вольт). Дуговой разряд является мощным источником света. Его используют в осветительных установках, для сварки и резки металлов (рис. 209), электролиза расплавов, в промышленных электропечах для плавки стали и др.

Рис. 208 Рис. 209

Интересно знать

В 1802 г. профессор физики Петербургской медико-химической академии В. В. Петров получил электрическую дугу. Он установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля, привести их в соприкосновение, а затем слегка раздвинуть на небольшое расстояние, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела, испуская ослепительный свет (электрическая дуга). Впервые электрическая дуга была применена в 1876 г. русским инженером П. Н. Яблочковым для уличного освещения.

Рис. 210

Коронный разряд возникает вблизи заострённой части проводника при атмосферном давлении под действием сильно неоднородного электрического поля. Он сопровождается слабым свечением, напоминающим корону, и характерным потрескиванием (рис. 210).

Коронный разряд используют в электрофильтрах для очистки промышленных газов от твёрдых и жидких примесей. Однако возникновение коронного разряда вокруг высоковольтных линий электропередачи нежелательно, так как приводит к потерям электрической энергии.

Интересно знать

Рис. 211

Часто перед грозой, во время шторма или снежной бури в атмосфере резко возрастает напряжённость электрического поля. Это приводит к возникновению слабого свечения вблизи заострённых предметов, например, вблизи корабельных мачт, шпилей на зданиях и др. (рис. 211). Моряки, бороздившие моря и океаны, часто наблюдали это явление (коронный разряд), которое получило название «огни Святого Эльма». Один из участников кругосветного плавания Магеллана писал: «Во время тех штормов нам много раз являлся сам Святой Эльм в виде света… чрезвычайно тёмными ночами на грот-мачте, где оставался в течение двух и более часов, избавляя нас от уныния».

Искровой разряд наблюдают при высоком напряжении (рис. 212). Он сопровождается ярким свечением газа, звуковым эффектом, который создаётся резким повышением давления воздуха. Примером искрового разряда в природе служит молния (рис. 213).

Рис. 212 Рис. 213

Интересно знать

Перед появлением молнии напряжение между облаком и поверхностью Земли достигает U ~ 108 – 109 В. Сила тока в молнии составляет I ~ 105 А, продолжительность разряда молнии — t ~ 10–6 с, диаметр светящегося канала — d ~ 10–20 см. Извилистый вид молнии объясняется тем, что электрический разряд проходит через участки воздуха, имеющие наименьшее сопротивление. А такие участки расположены в воздухе случайным образом.

Несамостоятельный и самостоятельный ток

Описанный кратко механизм возникновения тока в газах под воздействием внешнего поля представляет собой несамостоятельный разряд. После снятия внешнего воздействия электроток в газообразном веществе исчезает. Чтобы исследовать зависимости силы тока от напряжения, предстоит использовать стеклянную трубку, в которую впаяны электроды.

Если начать воздействовать на это устройство с помощью ионизатора, например, рентгеновского излучения, то в газе каждую секунду будет появляться некоторое количество пар свободных частиц с определенным зарядом. При отсутствии на клеммах электродов напряжения сила тока окажется равной нулю. Создав небольшую разницу потенциалов, можно заставить заряженные частицы упорядочено перемещаться, что приведет к появлению газового разряда.

Но из-за рекомбинации не все образованные в результате процесса ионизации ионы смогут дойти до электродов. Часть этих частиц приобретет нейтральный заряд. При увеличении разности потенциалов число заряженных ионов и электронов будет возрастать. При достижении определенного напряжения все заряженные частицы доберутся до электродов. Это позволяет говорить о том, что электроток достиг насыщения.

В результате вольт-амперная характеристика при появлении несамостоятельного тока становится нелинейной. Говоря проще, закон Ома в газах работает лишь при небольшой разнице потенциалов.

Если после достижения насыщения тока продолжить увеличивать напряжение на электродах, то при большой разнице потенциалов его сила начнет стремительно возрастать. Это связано с тем, что в газообразном веществе образуются дополнительные заряженные частицы сверх тех, что появляются под воздействием ионизатора. В определенный момент необходимость использования внешнего поля для поддержания разряда отпадет.

В ситуации, когда кинетическая энергия электронов превышает показатель энергии Wi, наблюдается ионизация молекул. При этом основную работу в образовании самостоятельного разряда выполняют электроны. В физике принято выделять 4 вида самостоятельного тока:

  1. Тлеющий. Создается в газообразных веществах при низком давлении (около 1,33 Па). Тлеющий разряд может быть получен при сравнительно небольшом напряжении. Используется он в газовых лампах, например, в неоновых. Применение различных инертных газов позволяет добиться свечения определенного цвета.
  2. Искровой. Появляется при постепенном повышении напряжения. В природе искровой разряд наблюдается в виде молнии.
  3. Дуговой. Если после возникновения искрового разряда продолжить снижать сопротивление электроцепи, то сила тока в искре начнет быстро увеличиваться. В результате возникнет дуговой разряд.
  4. Коронный. Наблюдается при высоком давлении под воздействием неоднородного электрополя.

Ток в жидкостях

Жидкости, как и твердые тела, могут быть проводниками, полупроводниками и диэлектриками. В этом уроке речь пойдет о жидкостях-проводниках. Причем не о жидкостях с электронной проводимостью (расплавленные металлы), а о жидкостях-проводниках второго рода (растворы и расплавы солей, кислот, оснований). Тип проводимости таких проводников – ионный.

Определение. Проводники второго рода – такие проводники, в которых при протекании тока происходят химические процессы.

Для лучшего понимания процесса проводимости тока в жидкостях, можно представить следующий опыт: В ванну с водой поместили два электрода, подключенные к источнику тока, в цепи в качестве индикатора тока можно взять лампочку. Если замкнуть такую цепь, лампа гореть не будет, что означает отсутствие тока, а это значит, что в цепи есть разрыв, и вода сама по себе ток не проводит. Но если в ванную поместить некоторое количество – поваренной соли – и повторить замыкание, то лампочка загорится. Это значит, что в ванной между катодом и анодом начали двигаться свободные носители заряда, в данном случае ионы (рис. 1).

Рис. 1. Схема опыта

Проводимость электролитов

Откуда во втором случае берутся свободные заряды? Как было сказано в одном из предыдущих уроков, некоторые диэлектрики – полярные. Вода имеет как раз-таки полярные молекулы (рис. 2).

Рис. 2. Полярность молекулы воды

При внесении в воду соли молекулы воды ориентируются таким образом, что их отрицательные полюса находятся возле натрия, положительные – возле хлора. В результате взаимодействий между зарядами молекулы воды разрывают молекулы соли на пары разноименных ионов. Ион натрия имеет положительный заряд, ион хлора – отрицательный (рис. 3). Именно эти ионы и будут двигаться между электродами под действием электрического поля.

Рис. 3. Схема образования свободных ионов

При подходе ионов натрия к катоду он получает свои недостающие электроны, ионы хлора при достижении анода отдают свои.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».Между электродами сварочного аппарата возникает дуговой разряд. Дуговой разряд горит в ртутных лампах — очень ярких источниках света.Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в газах

Протекание электрического тока через газ.При нормальной температуре и давлении газы являются изоляторами электричества, поскольку молекулы не имеют свободных заряженных частиц для миграции в этом состоянии.При высоком напряжении и низком давлении газы действуют как проводящая среда за счет образования ионов.

Разрядная трубка

  1. Цилиндрическая трубка длиной 30 см и диаметром 4 см, закрытая с обоих концов, в которой исследуется электрический разряд.
  2. Состоит из двух платиновых электродов на концах трубки.
  3. Вакуумный насос и манометр также подключены.
  4. Разность потенциалов на электродах составляет около 50 кВ.

Газовый разряд при разном давлении

При 10 мм рт. ст.

  1. Начинается разрядка.
  2. Появляется светящаяся полоска между электродами.
  3. Возникает фиолетовая нерегулярная искра, называемая голубым серпантином (одиночная веревка).
  4. Издает дребезжащий звук.

При 5 мм рт. ст.

  1. Синие полосы расширяются.
  2. Разряд становится ярким и устойчивым.
  3. С жужжащим звуком появляется светящийся столбик, называемый положительным столбиком (также называется разрядкой Гейслера).
  4. Цвет зависит от используемого газа: красный для воздуха и синий для водорода.

При 2 мм рт. ст.

  1. Положительный столб, начинающийся от анода, занимает большую часть трубки.
  2. Положительный столб отделяется от катода и движется к аноду.
  3. Светящееся свечение на катоде называется отрицательным свечением.
  4. Пространство между положительным столбцом и отрицательным свечением называется темным пространством Фарадея.

При 0,4 мм рт. ст.

  1. Положительный столбик укорачивается и распадается на альтернативные яркие и темные дискообразные структуры, называемые бороздками.
  2. Темное пространство Фарадея увеличивается.
  3. Отрицательное свечение покидает катод, и появляется другое свечение, называемое катодным свечением.
  4. Пространство между катодом и свечением -ve представляет собой темное пространство Крукса.

При 0,01 мм рт. ст.

  1. Бороздки, темное пространство Фарадея, отрицательное свечение исчезает.
  2. Трубка, заполненная темным пространством Крука.
  3. Стенка трубки будет светиться флуоресценцией определенного цвета.
  4. Поскольку испускаются определенные лучи, катод ударяется о стену.
  5. Эти невидимые лучи называются катодными лучами.

При 10-4 мм рт. ст.

  1. Разряд не проходит через трубку, так как молекул газа для проводимости очень мало.
  2. Катодные лучи.
  3. Когда разрядная трубка разряжается до 0,01 мм рт. ст., вся трубка заполняется темным пространством Крука, и стенка трубки начинает светиться. Это указывает на то, что нечто, исходящее от катода, ударяется о стену и заставляет стену светиться.
  4. Нечто, исходящее от катода в виде потока видимых лучей, называется катодными лучами.
  5. Эти быстро движущиеся невидимые частицы называются электронами.

Свойства катодных лучей перечислены ниже:

  1. Излучаются с поверхности катода по нормали к ней.
  2. Направление не зависит от положения анода из-за присутствия газов.
  3. Движутся по прямой траектории и отбрасывают тень.
  4. Когда они падают на определенное вещество, то производят флуоресценцию.
  5. Вызывают химические изменения и влияют на фотопластинки.
  6. Производят рентгеновские лучи, когда ударяются о металл с высоким атомным номером.
  7. Выделяют тепло, когда их останавливает материя.
  8. Оказывают механическое давление и обладают большой потенциальной и кинетической энергией.
  9. Они отклоняются как электрическими, так и магнитными полями.
  10. Их скорость 107 м/с.
  11. Могут ионизировать газ, через который они проходят.
  12. Могут проникать сквозь тонкий лист бумаги.

Понятие о плазме

Степень ионизации плазмыα определяется отношением числа ионизированных атомов к их общему числу. В зависимости от степени ионизации плазма подразделяется наслабо ионизированную (α — доли процента),частично ионизированную (α — несколько процентов) иполностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 106 — 107 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

3.ВАХ газового разряда

На начальных стадиях необходимо действие внешнего ионизатора.

На участке ОАВ ток существует под действием внешнего ионизатора и быстро выходит на насыщение, когда все ионизованные частицы
участвуют в образовании тока. Если убрать внешний ионизатор, то ток прекращается.

Данный вид разряда называется несамостоятельным газовым разрядом. При попытке увеличить напряжение в газе появляются лавины
электронов, и ток растет практически при постоянном напряжении, которое называется напряжением зажигания (ВС).

С этого момента разряд становится самостоятельным и отпадает необходимость внешнего ионизатора. Число ионов может стать столь
большим, что сопротивление межэлектродного промежутка уменьшится и соответственно упадет напряжение (СД).

Затем в межэлектродном промежутке область прохождения тока начинает сужаться, и сопротивление растет, а следовательно, растет
напряжение (ДЕ).

При попытке увеличить напряжение газ становится полностью ионизованным. Сопротивление и напряжение падает до нуля, и ток
вырастает во много раз. Получается дуговой разряд (ЕF).

ВАХ показывает, что газ совершенно не подчиняется закону Ома.

Плазма

Газ в обычном своем состоянии является диэлектриком, так как в нем мало свободных носителей заряда. Однако, как мы уже знаем, при ионизации газа он может уже проводить электрический ток. Также нам известно, что при увеличении температуры степень ионизации значительно повышается. И возможно достигнуть так называемого четвертого состояния вещества – плазмы.

Определение. Плазма – состояние вещества, когда в целом оно электронейтрально, но содержит в свободном состоянии и положительно, и отрицательно заряженные носители заряда. Плазма как термин также применяется и в медицине, но обозначает составляющую часть крови и некоторых других жидкостей.

Плазма по степени ионизации делится на:

  • Частично ионизованную
  • Средне ионизованную
  • Полностью ионизованную

Также существует деление по температурам:

  • Низкотемпературная плазма (температуры порядка тысяч градусов)
  • Высокотемпературная плазма (температуры порядка миллиона градусов)

Плазма обладает рядом свойств, которые отличают ее, например, от обычного ионизированного газа:

  • В плазме находится большое количество заряженных частиц, и они достаточно подвижны
  • Выравнивание зарядов плазмы происходит достаточно быстро, поэтому могут легко возбуждаться колебания и волны
  • У плазмы чрезвычайно высокая электропроводность, что делает ее практически сверхпроводником

Ионизация газа

Электрический ток в газах, как и ток в любой другой среде, требует наличия свободных электрических зарядов. В нормальном состоянии газа таких зарядов там нет, поэтому их необходимо создать искусственно. Существует два способа это сделать. Первый – это расщепить нейтральные атомы газа на электроны и положительные ионы. Второй – привнести в газ эти свободные носители извне. Как правило, применяется способ ионизации.

Определение. Ионизация – процесс расщепления нейтральных молекул на ионы и электроны. Для протекания процесса ионизации необходимо каким-либо способом придать частицам дополнительную энергию, чтобы они смогли разорвать внутримолекулярные связи. Для этого используется либо некоторое излучение (например световое), либо нагревание. После ионизации газа, если приложить некоторую разность потенциалов, разноименно заряженные частицы начнут движение в противоположных направлениях, что будет означать протекание тока.

Процесс ионизации происходит сложным образом: в результате него образуются как положительные ионы, так и отрицательные ионы, так и свободные электроны. Проводимость газов – ионная.

Электронный ток в жидкостях кратко

«Физика — 10 класс»

Каковы носители электрического тока в вакууме?Каков характер их движения? Жидкости, как и твёрдые тела, могут быть диэлектриками, проводниками и полупроводниками. К диэлектрикам относится дистиллированная вода, к проводникам — растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электролитическая диссоциация.

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы.

Распад молекул на ионы под влиянием электрического поля полярных молекул воды называется электролитической диссоциацией.

Степень диссоциации — доля в растворённом веществе молекул, распавшихся на ионы.

Степень диссоциации зависит от температуры, концентрации раствора и электрических свойств растворителя.

С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.

Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы.

При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Ионная проводимость.

Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы.

Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду. В результате по цепи пойдёт электрический ток.

Проводимость водных растворов или расплавов электролитов, которая осуществляется ионами, называют ионной проводимостью.

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

Электролиз. При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны (в химии это называется окислительной реакцией), а на катоде положительные ионы получают недостающие электроны (восстановительная реакция).

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

Процесс выделения на электроде вещества, связанный с окислительновосстановительными реакциями, называют электролизом.

От чего зависит масса вещества, выделяющегося за определённое время? Очевидно, что масса m выделившегося вещества равна произведению массы m0i одного иона на число Ni ионов, достигших электрода за время Δt:

Масса иона m0i равна:

где М — молярная (или атомная) масса вещества, a NA — постоянная Авогадро, т. е. число ионов в одном моле.

Число ионов, достигших электрода, равно:

где Δq = IΔt — заряд, прошедший через электролит за время Δt; q0i — заряд иона, который определяется валентностью n атома: q0i = пе (е — элементарный заряд). При диссоциации молекул, например КВr, состоящих из одновалентных атомов (n = 1), возникают ионы К + и Вr — . Диссоциация молекул медного купороса ведёт к появлению двухзарядных ионов Си 2+ и SO 2- 4 (n = 2). Подставляя в формулу (16.3) выражения (16.4) и (16.5) и учитывая, что Δq = IΔt, a q0i = nе, получаем

Закон Фарадея.

Обозначим через k коэффициент пропорциональности между массой m вещества и зарядом Δq = IΔt, прошедшим через электролит:

где F = eNA = 9,65 • 10 4 Кл/моль — постоянная Фарадея

Коэффициент k зависит от природы вещества (значений М и n). Согласно формуле (16.6) имеем

Закон электролиза Фарадея:

Масса вещества, выделившегося на электроде за время Δt. при прохождении электрического тока, пропорциональна силе тока и времени.

Это утверждение, полученное теоретически, впервые было установлено экспериментально Фарадеем.

Величину k в формуле (16.8) называют электрохимическим эквивалентом данного вещества и выражают в килограммах на кулон

(кг/Кл).

Из формулы (16.8) видно, что коэффициент к численно равен массе вещества, выделившегося на электродах, при переносе ионами заряда, равного 1 Кл.

Электрохимический эквивалент имеет простой физический смысл. Так как M/NA = m0i и еn = q0i, то согласно формуле (16.7) k = rn0i/q0i, т. е. k — отношение массы иона к его заряду.

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий – самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий – если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация – обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

Дуговой – сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой – можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Применение плазмы

Плазма находит очень широкое применение в современной науке и технике. Низкотемпературная плазма используется в первую очередь в лампах рекламных вывесок (рис. 4).

Рис. 4. Применение низкотемпературной плазмы

Высокотемпературная плазма применяется в таких устройствах, как магнитогидродинамический генератор, плазмотрон (для резки и сварки твердых материалов) (рис. 5).

Рис. 5. МГД генератор, плазмотрон

Также плазма используется в различных реактивных двигателях, так как с ее помощью можно достигать огромных реактивных скоростей порядка . Благодаря высокой своей температуре, плазма используется как катализатор для некоторых химических реакций, протекающих только при такой температуре.

К занятию прикреплен файл  «Это интересно!». Вы можете скачать файл  в любое удобное для вас время.

  • http://www.umnik-umnica.com/ru/school/physics/10-klass/
  • https://www.youtube.com/watch?v=597BvyHXATE
  • https://www.youtube.com/watch?v=g0WOkaJlmWA
     

Электрический ток в газах

Газы (в том числе и воздух) при обычных условиях не проводят электрический ток. Только под действием высокой температуры, большой разности потенциалов, рентгеновских лучей, ультрафиолетовых лучей, космических лучей, радиоактивного излучения и некоторых других причин газы ионизируются и становятся проводниками. Если прекращается действие причины, вызывающей ионизацию газа, то он перестает проводить электрический ток (в отличие от электролитов, которые всегда являются проводниками электрического тока).

Ионизация газа отличается от ионизации жидкого проводника. В жидкости молекула распадается на две заряженные части, а в газе происходит отделение электронов от молекул (рис. 1) (при этом молекулы превращаются в положительно заряженные ионы).

Рисунок 1. Процесс ионизации газа — распад нейтральных частиц на электроны и положительные ионы

Одним из видов прохождения электрического тока через газ является электрический разряд. Примеров электрических разрядов можно привести очень много: искра, образующаяся при разрыве электрической цепи, молния, пробой газового разрядника и т. д. Все эти разряды кратковременны.

Существует и другой вид разряда в газах — это так называемый дуговой разряд.

Рисунок 1. Дуговой разряд

Явление дугового разряда было открыто выдающимся русским ученым-электротехником В. В. Петровым. Суть этого явления заключается в том, что между двумя угольными стержнями, соединенными с источником электрической энергии, возникает непрерывный электрический разряд, сопровождаемый ярким светом и большим выделением тепла. Свойство дуг создавать яркий свет раньше использовался в прожекторах, киноаппаратуре и т. д. Благодаря большому выделению тепла электрическая дуга применяется в электрометаллургии.

Следует отметить, что электрическая дуга является простейшим генератором низкотемпературной плазмы. Плазма не обязательно связана с огромными температурами и сложнейшими установками. Электрическая дуга, молния, свечение неоновых реклам и даже пламя обычной свечи — все это различные виды низкотемпературной плазмы. Генераторы низкотемпературной плазмы называются плазматронами. Плазматрон позволяет практически любой газ нагреть до температуры 7000—10 000° С при помощи электрической дуги постоянного или переменного тока. Плазматроны находят все более широкое применение в химической и горнорудной промышленности, металлургии и в других отраслях народного хозяйства.

На явлении проводимости газов при ионизации основано устройство многих радио- и электротехнических приборов: ртутных ламп, газотронов, тиратронов, газовых разрядников, газовых стабилизаторов напряжения, газосветных трубок и др.

Похожие материалы:

  • Протекание тока
  • Электрический ток в металлических проводниках
  • Электродвижущая сила (ЭДС) источника энергии
  • Направление и величина электрического тока. Количество электричества
  • Электрическое сопротивление проводника. Электрическая проводимость
  • Электрический ток в электролитах
  • Ток смещения в диэлектрике
  • Электрический ток в полупроводниках

Источник: ledsshop.ru

Стиль жизни - Здоровье!