Через равные промежутки времени измеряется ток

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

ПериодT — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частотаf — величина, обратная периоду, равная количеству периодов за одну секунду. Один период в секунду это один герц (1 Hz)

Циклическая частотаω — угловая частота, равная количеству периодов за секунд.

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фазаψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение

— величина напряжения или тока измеренная относительно нуля в любой выбранный момент времениt .

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени. Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

С учётом начальной фазы:

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp

иU amp — амплитудные значения тока и напряжения.

Измерение силы тока

Главным параметром электричества, измеряемым мультиметром, является сила тока. Чтобы проверить силу тока аккумулятора мобильника, автомобильных аккумуляторных батарей или простой батарейки мультиметром, нужно настроить прибор на режим измерения постоянного тока. У дешевых моделей, таких как М-831, переключения нет — он всегда работает на постоянный ток, однако более сложные устройства могут работать и с переменным током.

После этого к гнездам (портам) на корпусе устройства подключаются щупы — два кабеля, красного и черного цвета, с оголенными контактами на концах. Черный щуп (минусовой) вставляется в гнездо, обычно помеченное надписью COM. Красный (плюсовой) — в один из дополнительных портов. Они могут иметь разную маркировку; обычно имеется два гнезда: одно — для небольших величин (до 200 мА), второе —до 10 А. Точную маркировку можно узнать из инструкции к конкретному устройству.

Важно! Несмотря на то, что стандартная сила тока в розетке меньше 10 А, измерять мультиметром этот параметр бытовой электросети нельзя. Случится короткое замыкание, и прибор взорвется

Кликните для увелечения

Измерение силы токаПеред тем как измерить силу тока мультиметром, нужно выбрать подходящий диапазон значений. Для этого нужно приблизительно знать ожидаемый результат. В секции силы тока на корпусе прибора можно найти разные пределы (обычно от 200 мкА до 200 мА), отдельно — 10 А. Если даже примерной информации нет, лучше выбрать вариант побольше — в крайнем случае измерение получится неточным, тогда можно будет снизить предел и провести тест снова. Профессиональные электрики пользуются цифровыми устройствами, которые самостоятельно выставляют нужный диапазон, автоматически определяя проходящие через цепь амперы.

После настройки прибора при измерении силы тока зарядного устройства, АКБ или другого потребителя свободные концы щупов прикладываются к контактам последовательно (с разрывом цепи). Делать это следует, дав нагрузку, чтобы не сжечь прибор. Рекомендуется соблюдать полярность, но это не обязательно — при ошибке на экране мультиметра просто появится число с минусом. Подключать прибор параллельно нельзя, в т. ч. исследуя аккумулятор мультиметром под нагрузкой!

Важно также знать о том, как измерить ток утечки в автомобиле мультиметром. Этот параметр характеризует потребление энергии при выключенном двигателе, и для разных моделей машин варьируется между 10 и 80 мА. Он влияет на скорость деградации аккумуляторов

Он влияет на скорость деградации аккумуляторов.

Измеряется утечка так же, только при отключении всего оборудования, способного потреблять электрическую энергию.

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц. Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U — Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ) — Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3) — Сила тока через мощность и сопротивление: I = √(P / R) — Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову — это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу — это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум — это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе — это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет «протащить» через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его «порвет», то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Направление и величина электрического тока. Количество электричества

Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).

Рисунок 1. Простейшая электрическая цепь

Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.

Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис. 2. В действительности же в металлических проводниках ток проходит в обратном направлении.

Рисунок 2. Направление движения электронов в проводнике и направление тока

С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.

Определение: Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Сила тока (ток) обозначается буквой I или i.

Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:

За единицу тока принимается ампер (сокращенно обозначается буквой А). В ГОСТ приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10 -7 единицы силы на каждый метр длины».

Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).

Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.

В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.

1 мА = 0,001 А, или 1 А = 1000 мА.

Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.

1 мкА = 0,001 мА = 0,000001 А.

Полезно запомнить также следующие соотношения:

Постоянный электрический ток

Как уже рассматривалось ранее, любой заряд может служить источником электрического поля. Данное поле в каждой точке можно характеризовать как величиной напряжённости, так и величиной потенциала. Если поместить в данное поле любой заряд, на него начнёт действовать сила Кулона, которая по второму закону Ньютона приводит наш выбранный заряд в движение.

Таким образом, любой заряд в ненулевом электрическом поле будет двигаться. Источником поля в реальных системах могут быть другие заряды и системы зарядов (конденсаторы любой формы), источники тока и напряжения, классически, наша обычная сеть (розетка).

А теперь представим, что в таком поле присутствует не один, а множество одинаковых по модулю зарядов. Все они в едином порыве устремятся в одну сторону, такое однонаправленное движение зарядов и назовём электрическим током. Таким образом, электрический ток – всякое упорядоченное движение электрических зарядов в пространстве.

Большинство задач школьной физики рассматривает ток как движение электронов, в данном разделе мы поступим также. Пока возьмём в качестве дано тот факт, что в проводниках (телах, хорошо проводящих ток) существует огромное количество свободных электронов, которые, при наличии внешнего электрического поля, приходят в направленное движение, образуя электрический ток.

Для описания электрического тока (большой он или маленький) вводят понятие силы тока. Представим себе цилиндрический провод (в принципе, любой провод, по которому течёт ток, является цилиндрическим). На пути потока движущихся частиц (в нашем случае, электронов) поставим мысленную площадку перпендикулярно направлению движения зарядов. Представим себе, что на этой площадке находится маленький лепрекон, который может сосчитать количество зарядов, которые прошли через площадку. Тогда заряд, прошедший через площадку:

(1)

  • где — заряд, прошедший через площадку.
  • — количество зарядов, прошедших через площадку,
  • — время наблюдения, т.е. время прохождения заряда через площадку.

В случае, если наблюдение происходит в различные моменты времени и в различные промежутки времени, то значение силы тока может меняться, а может и нет. Тогда постоянный электрический ток – ток, сила и направление которого остаётся неизменным с течением времени.

Размерность тока:

(Ампер). Исходя из (2), размерность силы тока: Кл/с.

Источник

Как измерить ёмкость

Мультиметр можно использовать и как тестер для измерения ёмкости аккумулятора. Замер ёмкости аккумулятора можно произвести с помощью контрольного разряда батареи. Чтобы проверить ёмкость потребуется вначале полностью зарядить аккумулятор. Затем необходимо убедиться что батарея максимально заряжена, сделав замер напряжения и плотности электролита.

Далее необходимо подключить нагрузку известной мощности, например лампу накаливания мощностью 24 Вт, и отметить точное время начала данного эксперимента. Когда напряжение батареи упадёт до 50% процентов от ранее установленного показания полностью заряженного аккумулятора, лампочку следует отключить.

Измерение ёмкости, которое выражается в а/ч, осуществляется путём перемножения силы тока в цепи при подключённой нагрузке, на количество часов, в течение которых осуществлялся контрольный разряд батареи. Если получится значение, максимально приближенное к номинальному показателю а/ч, то батарея находится в отличном состоянии.

Электрические токи в природе

Молния

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Что такое трехфазный переменный ток

Если два синусоидальных сигнала одновременно достигают наибольшей амплитуды и нуля, то можно говорить что эти сигналы имеют одинаковую фазу, т. е. совпадают по фазе. Если эти сигналы имеют разные значения максимума и нуля, то они сдвинуты по фазе.

Электрическая схема соединений треугольник

В трехфазном переменном токе имеется три сигнала однофазного синусоидального тока сдвинутых относительно друг друга на 120°. Из многофазных электрических сетей в основном выбрана трехфазная сеть, как наиболее оптимальная. Трехфазная сеть состоит из 3-х однофазных сетей.

Такую однофазную сеть в трехфазной сети называют фазой. Возможны два вида соединения фаз в трехфазной сети — это соединение «треугольником» и «звездой». При соединении «звездой» одни концы генератора соединяются вместе и образуют нулевую точку, а другие провода обмоток идущие к нагрузкам называются линейными.

Напряжение между линейными проводами и нулевыми проводами называются фазным напряжением. А напряжение между линейными проводами называют линейным напряжением. Нулевой провод используется в случаях неравномерной нагрузки, позволяя выравнивать напряжение фаз.

Нейтральный провод применяется в схеме освещения, где создать равномерную нагрузку нелегко, так как не все лампы включаются одновременно и равномерно по фазам. Между фазными и линейными напряжениями имеется зависимость: Uл = √3*Uф ≈ 1,73*Uф. В трехфазных сетях по схеме «звезда» Uл — 380 В, а Uф = 220 В.

Фазное и линейное напряжение в трехфазных цепях схемы звезда

Если нагрузка в электрической цепи по схеме «звезда» в трех фазах одинакова, т. е. симметрична, то в нейтральном проводе тока нет, или он минимальной величины. А если ток нейтрали незначителен, то и сечение нулевого провода значительно меньше, чем сечение линейного провода. Когда нагрузка одинакова, ток в нейтрали будет равен нулю.

Нейтраль в этом случае не нужна. Тогда используют схему соединения трехфазной сети «треугольник», где все концы соединяются с началами обмоток генератора и образуют схему «треугольник» без нейтрали. В схеме «треугольник» фазные и линейные напряжения равны Uл = Uф, а токи определяются по формуле — IЛ = √3*IФ, где линейный ток в 1,73 раза больше фазного.

Соединение по схеме «треугольник» иногда используется в освещении, но в основном такую схему применяют в трехфазных сетях с небольшим перекосом фаз. Также тяжёлый запуск асинхронных электродвигателей осуществляется по схеме «звезда», чтобы снизить большой пусковой ток электродвигателя, а достигнув рабочего режима, переходят на схему «треугольник».

Помогла вам статья?

ДаНет

Закон Ома.

Основным законом, которым руководствуются радиолюбители — является Закон Ома..
Георг Симон ОМ
Georg Simon Ohm,  1787–1854
Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.
Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника.
I = U/R, где R — электрическое сопротивление проводника.
Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая:Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению.
Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт.
Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность.
Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах.
Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе.
Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности.
Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.

Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.

Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы.
В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.

Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома.
Выглядит она следующим образом:

В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

,

  • — ЭДС цепи,
  • I — сила тока в цепи,
  • R — сопротивление всех элементов цепи,
  • r — внутреннее сопротивление источника питания.

Закон Ома для полной цепи звучит так — Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Сопротивление

При измерении сопротивления, равно как и при прозвонке цепи на целостность или короткое замыкание, щупы подключаются так же, как и в предыдущем случае. Переключатель на лицевой панели мультиметра должен быть выставлен на необходимые показатели диапазона, который отмечает значок сопротивления — омега (Ω).

Если необходимо проверить работоспособность лампы или наличие разрыва в цепи, можно воспользоваться функцией прозвона. В том же диапазоне сопротивления имеется значок в виде точки и уходящих от нее вправо черточек. Это обозначение звукового сигнала. При переключателе, включенном в этом положении, если между щупами происходит короткое замыкание, раздается звуковой сигнал. Это очень удобно, не нужно постоянно смотреть на дисплей.

У подобных устройств измеряться будет диапазон сопротивлений от 0 до 200 МОм.

Подключение для измерения величины и сопротивления

Источник: ledsshop.ru

Стиль жизни - Здоровье!