Автоматический выключатель для мультиметра

Отличия характеристик “В” и “С”

Зачем нужны разные защитные характеристики автоматов? Отличия на первый взгляд незначительные – лишь в порогах отключения электромагнитного расцепителя. При этом тепловые расцепители при том же номинальном токе не отличаются. В чем же разница?

Возьмём для сравнения два автоматических выключателя с одинаковым номинальным током 10 А. Видите разницу?

Представители автоматических выключателей семейств “В” и “С” с номинальным током 10 А

Давайте пристально посмотрим на время-токовые характеристики (ВТХ) этих двух экземпляров (данные можно взять в каталоге производителя или в ГОСТ IEC 60898-1-2020, который можно будет скачать в конце статьи):

Время-токовые характеристики автоматических выключателей с типом мгновенного расцепления “В” и “С”  с номинальным током 10 А

Отличия характеристик:

У ВТХ “В” (слева) электромагнитный расцепитель отключается (размыкает контакты), начиная от сверхтока в 3…5 раз больше номинального. Это означает, что в данном случае автомат может выключиться при сверхтоке более 30 А. А должен выключиться при токах 50 А и выше.

ВТХ “С” (справа) отличается лишь сверхтоком, начиная с которого он может и должен выключиться – соответственно 50 и 100 А.

Время размыкания электромагнитного расцепителя (а значит, отключения цепи по короткому замыканию) должно быть менее 0,1 с. Что и показано на обоих графиках. Реальное время отключения АВ при КЗ на порядок меньше (около 0,01 с), а это только плюс. Ведь за пол периода напряжения в случае КЗ вряд ли что-то сможет повредиться или загореться. Фигурально выражаясь, ЭМ расцепитель является “самым слабым звеном” в цепи, которое предназначено соответствовать пословице “где тонко, там и рвется”.

Область применения

В первую очередь, это электроизмерительный инструмент. Его основное назначение – определение параметров электросетей. Не обойтись без него специалистам в области радиоэлектроники. Электрики и специалисты службы КИП и А (контрольно-измерительные приборы и автоматика) ежедневно диагностируют электрооборудование и системы автоматизации технологических процессов, используя цифровые и аналоговые тестеры и токовые клещи.

Строительный бизнес не отстает в своем развитии от промышленных предприятий. Современное жилье и офисные здания, магазины и рестораны имеют достаточно сложные инженерные сети:

  • освещение;
  • силовое электрооборудование;
  • системы видеонаблюдения, охраны и сигнализации объектов и т.п.

Все это комплектуется самой современной электроникой. Поэтому в строительстве качественные мультиметры нужны не меньше, чем при обслуживании и ремонте оборудования промышленных предприятий.

Современные тестеры имеют массу полезных функций, позволяющих использовать его не только в качестве электроизмерительного инструмента. Некоторые устройства, могут определять уровень шума, влажности и освещенности. Таков, например, Pro’sKit МТ-1620, производства Тайвань. Такими аппаратами можно вооружать инженеров по охране труда.

Сфера использования тестера сегодня необычайно широка. Электроника и электротехника прочно вошли в нашу жизнь, и с каждым днем окружают нас новыми полезными вещами, о которых не так давно мы и мечтать не могли. Без тестера настроить и отремонтировать их будет непросто.

Лучшие мультиметры с расширенными возможностями

Testo 760-1

Полностью автоматический мультиметр практически профессионального класса, внесенный в Госреестр. Не любите круговой селектор режима? Что ж, этот «умный» прибор создавался как раз на такой случай. Для работы достаточно выбрать один из трех режимов («напряжение», «ток» и «все остальное»), а дальше мультиметр сам определит нужный диапазон и метод измерений.

Точность измерений и ширина шкалы у «Теста» (да уж, русскоязычный человек это название точно не забудет) подойдут для большинства работ. Тестер может измерять, помимо прочего, емкость в пределах от 10 нФ до 100 мкФ, частоту от 0,001 Гц до 512 кГц. Класс защиты корпуса от пыли и влаги – IP64.

Особо отметим эргономику корпуса и информативность дисплея: с этим прибором действительно приятно работать.

Основные плюсы:

  • Внесен в Госреестр
  • Автоопределение диапазона измерения с защитой от перегрузки
  • Эргономичный корпус

Минусы:

Нет режима проверки транзисторов

Модели в линейке:

Testo 760-2– постоянное напряжение мин./макс. 600 мВ/600 В, сопротивление мин./макс

60 Ом/60 МОм, измерение температуры и скважность Testo 760-3– постоянное напряжение мин./макс. 600 мВ/600 В,сопротивление мин./макс

60 Ом/60 МОм, измерение температуры и скважность

ELITECH ММ 300

Этот мультиметр оснащен специальным механизмом поворота дисплея. Такое инженерное решение упрощает выбор оптимального положения индицирующего устройства с учетом угла зрения. Прорезиненная накладка обеспечивает более надежную фиксацию мультиметра по сравнению с выдвигающейся подставкой. Кроме полупроводниковых приборов и сопротивлений этим прибором можно тестировать конденсаторы и элементы питания.

Плюсы:

  • лучшие показатели в сочетании цена-качество;
  • подвижный дисплей;
  • надежная защита от перегрузок;
  • защита корпуса от механических повреждений;
  • широкий диапазон рабочих температур (от -40°С до +50°С)
  • расширенный функционал для тестирования компонентов электрических схем.

Минусы:

по отзывам пользователей существенные недостатки отсутствуют.

Fluke 106 — расширенный функционал

Мультиметр Fluke 106 – компактные размеры делают это устройство удобным в любой рабочей ситуации. Благодаря высокому качеству исполнения данный мультиметр обрел широкую популярность среди профессионалов и простых пользователей.

При помощи данного изделия вы сможете произвести измерения постоянного и переменного напряжения и силы тока, емкости и сопротивления. Проверить целостность цепи и диоды. Базовая погрешность устройства составляет 0,5%.

Ценник: от 4 000 до 4 200 рублей.

мультиметр Fluke 106

IEK Professional MY62

Этот компактный прибор защищен от повреждений резиновым демпфирующим чехлом. Экономичный жидкокристаллический дисплей потребляет минимальное количество электроэнергии. Дополнительную экономию заря обеспечивает автоматическое отключение питания в режиме ожидания. С применением специализированного переходника базовые возможности мультиметра значительно расширяются. Часто прибор используют для проверки транзисторов и подключения термопары.

Плюсы:

  • качественная сборка;
  • защитный «бампер»;
  • надежная фиксация в гнездах щупов;
  • качество щупов;
  • шикарный функционал по разумной стоимости;
  • автоматизированное отключение автономного источника питания.

Минусы:

емкость конденсаторов измеряется только до 20 мкФ.

CEM DT-61

Этот универсальный прибор представляет собой целую минилабораторию, позволяющую в цифрах изучать окружающую среду. Помимо базовых характеристик, мультиметр DT-61 способен измерять температуру бесконтактным способом (по мощности теплового излучения), вплоть до очень высоких значений. Кроме того, устройство может применяться для замеров уровня влажности, освещенности и шума, поэтому его удобно использовать для проверок помещений на соответствие нормативам по охране труда.

Прибор умеет выполнять как прямые, так и относительные измерения, имеет режим удержания полученных данных, автоматический выбор необходимого диапазона, контрастную подсветку дисплея и способен автоматически выключаться через определенное время простоя. Конструкция мультиметра удовлетворяет требованиям по электробезопасности на уровне категорий IV при бесконтактном поиске статического электричества напряжением до 1000 В, и III — при выполнении контактных измерений.

Основные плюсы:

  • внесен в Госреестр средств измерений;
  • встроенная защита от перегрузок;
  • прорезиненный ударопрочный корпус;
  • удобная подставка.

Минусы:

  • питание от элемента «Крона»;
  • небольшие пределы измерения емкости;
  • подсветка не выключается автоматически.

Какая защита у нас есть, и какой не хватает

За последние годы в электротехнической сфере введены некоторые ограничения и нововведения, которые служат, прежде всего, двум целям – сохранение жизни человека и сохранение жизни оборудования (от общего к частному – электросетей, электроустановок, нагрузки). Благо, современные технологии и устройства позволяют обеспечить безопасность и людей, и проводов.

Вот неполный список защит в наших электрощитках, о которых я говорю:

автоматические выключатели (АВ), которые выключают питание при перегрузках и коротких замыканиях. Это – единственное устройство в наших электрощитках, установка которого строго обязательна в любом случае

Ему мы и уделим пристальное внимание в этой статье;

устройства защитного отключения (УЗО), или, по-новомодному, выключатели дифференциального тока (ВДТ), которые выключают питание при появлении опасного значения дифференциального тока (его появление означает, что на корпусах приборов может возникнуть опасный и даже смертельный потенциал для человека). Сюда же можно отнести и АВДТ (автоматические выключатели дифференциального тока), которые являются гибридами АВ и ВДТ;

реле напряжения, которые выключают питание и защищают таким образом оборудование от повышенного и пониженного напряжения (и не только);
устройства защиты от дугового пробоя (УЗДП) или устройства защиты от искрения (УЗИС), которые выключают питание при подозрении на искрение любого вида, даже при небольшом токе;
устройства защиты от импульсного перенапряжения (УЗИП) или ограничители перенапряжения (ОПН), купирующие по мере сил мощные кратковременные скачки напряжения, которые могут быть вызваны природными или техногенными причинами

В зависимости от конфигурации схемы, питание в этом случае тоже, как правило, отключается.

Некоторые говорят, что это “развод клиента на деньги”, но я с этим не согласен. Если клиент ценит свою жизнь, готов платить за это, и понимает, что это и для чего – нужно ставить все возможные защиты и резервы.

Важно, что установка любой защиты должно быть оправдана, а её характеристики тщательно просчитаны. Ведь никакая, даже самая нужная защита, не должна быть излишне сложной и портить нервы из-за ложных срабатываний

В статье поговорим о том, как максимально эффективно защитить электроприборы и электропроводку от короткого замыкания (КЗ). Делается это благодаря нововведению, которое с большим трудом входит в нашу жизнь, не смотря на копеечные затраты. Виной тому – косность российского менталитета, его невежество и страхи. Которые я развею в этой статье.

Для полноты восприятия рекомендую ознакомиться с моими предыдущими статьями на эту тему – Ток КЗ: размер имеет значение и Селективность в домашнем щите: как достичь невозможного.

Для начала, как обычно, немного вводной информации.

Особенности прозвонки провода приборами: мультиметр, тестер, мегаомметр

Для проверки целостности цепи требуется источник напряжения и любой индикатор наличия тока. Им может служить лампа, цифровой или стрелочный прибор, звонок и т.д. Удобнее всего использовать:

  • Мультиметр или тестер. Это многофункциональный прибор с функциями измерения напряжения, тока, сопротивления, определения параметров полупроводниковых элементов.
  • Омметр и мегаомметр. Такой прибор применяется для проверки цепей с высоким сопротивлением, измерения сопротивлений изоляции. Для прозвонки проводов бытовой электропроводки применение мегаомметра нецелесообразно. Прибор генерирует высокое напряжение и может повредить изоляцию кабеля.

Для проверки проводки также используют подручные средства – лампы накаливания, батареи и аккумуляторы. Применение таких средств возможно только при полностью обесточенном участке цепи и отключении приборов с емкостной и индуктивной нагрузкой (насосы, холодильники, электроинструменты, люминесцентные лампы).

Определение точного напряжения батарейки

Для того чтобы самому выяснить действительное напряжение батарейки потребуется хотя бы один точный резистор номиналом 2 или 2,2 кОм с погрешностью 0,5%. Этот номинал резистора выбран из-за того, что при последовательном подключении с ним микроамперметра, общее сопротивление цепи составит 5000 Ом. Следовательно, проходящий через тестер ток будет около 300 мкА, и стрелка отклонится на полную шкалу.

I=U/R=1,5/(3000+2000)=0,0003 А.

Если тестер покажет, к примеру, 290 мкА, значит, напряжение батареи равно

U=I*R=0,00029(3000+2000)=1,45 В.

Теперь зная точное напряжение на батарейках, имея одно точное сопротивление и микроамперметр можно подобрать необходимые номиналы сопротивления шунтов и добавочных резисторов.

Мультиметр dt 830b: инструкция по применению

В этом относительно простом приборе имеются все базовые функции.

Для щупа имеется только три гнезда, поэтому использование устройства измерения тока свыше 10 А не сработает. Однако можно проверить транзисторы и диоды.

Понимая, как использовать мультиметр DT 830B (DT 830 В), стоит учитывать: на дисплее при настройке максимального диапазона измерения в текущем режиме измерения (500 В) появляется предупреждение о том, что это самое высокое значение – HV (высокое напряжение) – и работа с инструментом требует осторожности

При измерении сопротивлений (в небольших значениях) не пренебрегайте сопротивлением самих датчиков. Вы можете определить его значение, закрыв анализы. Это значение впоследствии вычитается из измеренного значения сопротивления устройства или участка электрической цепи.

Стоит упомянуть особенности этой дешевой модели:

  • относительная хрупкость пластика (не роняет);
  • щупы среднего качества;
  • погрешность измерения около 1%;
  • ручная смена режима измерения (поворотом ручки);
  • дисплей без подсветки.

В комплекте: мультиметр DT 830v, инструкция по эксплуатации (бумага не всегда нормального качества, особенно при покупке китайского устройства), щупы.

Более удобный вариант «для чайников» – обзор режимов работы в видео, нюансы работы в разных режимах измерений.

Способ проверки конденсаторов мультиметром

Все конденсаторы разделяются на полярные и неполярные. Полярные конденсаторы являются электролитическими, все остальные модификации — это неполярные устройства.

Особенность полярных моделей заключается в способе их пайки к плате. Плюсовой контакт паяется к плюсу платы, а минусовой к минусу. Неполярные можно припаивать как угодно.

Что касается безопасности в работе с полярными конденсаторами, то при неправильно припаянных контактах он может взорваться (касается советских моделей), в импортных предусмотрены специальные заломы на верхушке корпуса, которые в случае взрыва просто раскроются и подавят аварию.

Полярный конденсатор

Говоря о свойствах конденсатора нужно отметить, что он постоянно пропускает через себя только переменный ток, постоянный проходит только несколько секунд (пока не зарядится), а потом не пропускает. Для измерений ёмкостей конденсаторов мультиметром они должны иметь ёмкость от 0.25 микроФарад. В противном случае вам понадобится такой прибор, как LC-метр.

Чтобы приступить к измерениям, нужно выяснить где у конденсатора контакт минуса. Делается это просто. Производители наносят на корпус чёрную галочку, которая указывает, что под ней находится минус.

Маркер минуса на корпусе

Возьмите проверяемый предмет, и с помощью любого металлического проводника замкните контакты между собой. Всё, конденсатор разряжен. Теперь возьмите мультиметр и выставьте режим прозвонки. Прислоните щупы к контактам. Первое, что покажет прибор, это минимальный показатель, но в тестере есть батарейка, которая выдаёт постоянный ток. Получается, что если продолжать удерживать щупы на контактах, то конденсатор будет заряжаться и показатели продолжат расти до бесконечности (1 на дисплее).

Если при первоначальном подключении мультиметра к устройству сопротивление будет равно нулю или сразу покажет единицу, значит, этот конденсатор не рабочий.

Последовательность действий при проверке проводки

Рассмотрим подробнее, как проверить проводку в квартире своими силами. Прозвонить ее можно в несколько этапов:

  • установить ручку мультиметра в положение «прозвонка»;
  • концы измерительных проводов вставить в гнезда прибора;
  • включить мультиметр;
  • замкнуть измерительные провода и отпустить их;
  • на проверяемом проводе зачистить концы и прикоснуться к ним измерительными контактами прибора.

Проверка исправности изоляции

Такая проверка помогает предупредить возникновение пожаров. Проверка изоляции проводится после монтажа электропроводки в доме. После проверки производятся работы по штукатурке стен, по облицовке их гипсокартоном и другие отделочные мероприятия. После отделки труднее устранить разрыв проводов или их замыкание. Все измерения рекомендуется производить мощным мегаомметром.

Проверка целостности отдельного куска провода

Распространенной проблемой электропроводки в квартире является обрыв проводки, который происходит при перегорании или при неаккуратном воздействии на него человека. Для проверки используются:

Прибор устанавливается в положение Ω, соединяются между собой измерительные концы. На шкале индикатора должно появиться значение, близкое к нулю. Теперь можно прикасаться щупами к концам провода. При имеющемся обрыве на индикаторе отобразится большое значение сопротивления.

Определение наличия короткого замыкания

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Проверка на короткое замыкание тестером – АвтоТоп Схемы всегда состоят из множества элементов, которые соединены между собой различными способами, поэтому все зависит от схемы, в которой стоит подозрительный конденсатор. Спрашивайте, я на связи!

Как проверить дифференциальный автомат

К сожалению, проверка у дифавтоматов, в условиях дома, таких важных характеристик как время срабатывания, перегрузочные характеристики, ток короткого замыкания не получится. Так как для проверки этих параметров необходимо иметь специальные приборы и оборудование.

Отличие дифавтомата от УЗО

Для дома вполне достаточно проверить дифференциальный автомат на срабатывание и соответствие току утечки защиты, при котором автомат отключается и обеспечивает защиту от поражения электрическим током. Дифференциальный автомат отличается от устройства УЗО только наличием автоматического выключателя. То есть это тот же УЗО плюс автомат в одном корпусе. Поэтому все проверки на пригодность дифавтомата аналогичны тестированию УЗО.

Виды проверок дифавтомата

Существует несколько способов проверки защитных устройств на работоспособность, это:

  1. Проверка кнопкой «ТЕСТ», расположенной на корпусе прибора.
  2. Обычной батарейкой от 1,5 В до 9 В.
  3. Резистором, имитирующим нарушение сопротивления изоляции электропроводки и бытовых приборов.
  4. Простым постоянным магнитом.
  5. Специальным электронным устройством для проверки параметров дифференциального автомата и УЗО используемых в промышленности.

Перед приобретением устройства защиты нужно знать, какие задачи оно будет выполнять. Для противопожарных целей дифавтомат и УЗО выбираются с током утечки 300 мА. Если необходима защита от поражения электрическим током, используется устройство с током утечки 30 мА. В сырых и влажных ванных помещениях или банях нужна защита с током утечки 10 мА.

Проверка кнопкой «ТЕСТ»

Эта кнопка расположена на лицевой стороне дифференциального автомата. Перед проверкой работоспособности устройства его подключают к сети. При нажатии на кнопку «ТЕСТ» защита отключает сеть. Кнопка «ТЕСТ» имитирует ток утечки, как при нарушении целостности изоляции проводов.

Проверка кнопкой тест

Нажатием этой кнопки происходит закорачивание нулевого провода входной клеммы и фазового провода на выходе устройства, через резистор, рассчитанный на ток 30 мА (или другой ток утечки, указанный на автомате). Устройство защиты отключается и обеспечивает защитную функцию. Такую проверку можно делать без нагрузки. Дифференциальный автомат может быть электромеханическим или электрическим, главное правильно подключить его к сети.

Проверка батарейкой

Проверяются такие устройства батарейкой 1,5 В — 9 В с номиналом тока утечки 10 — 30 мА. Прибор с меньшей чувствительностью 100 — 300мА от батарейки не сработает. Устройство защиты с характеристикой А сработает от батарейки подключенный к выводам любой полярностью.

А для приборов с характеристикой АС батарейку подключают одной полярностью, если устройство не сработает нужно поменять полярность батарейки (минус к выходу прибора, а плюс ко входу). Таким способом проверяются только электромеханические УЗО.

Проверка тока утечки резистором

Проверяется ток утечки дифференциального автомата резистором подключенным одним концом ко входу нулевого провода, а другим к выходу фазной клеммы. Для УЗО с током утечки 10 мА, 30 мА, 100 мА и 300 мА резистор рассчитывается по формуле: R =U/I Приблизительное значение резисторов для разных токов утечки: 10мА -22 ком, 30мА -7,3ком,100мА – 2,2ком и 300мА — 733 ом.

При проверке на ток срабатывания один конец подключается к выходной клемме фазы, а второй к входной клемме нулевого провода. УЗО должно быть подключено к сети (нагрузка не обязательна). При таком подключении резистора должна сработать защита. Иногда дифференциальный автомат не срабатывает. Это объясняется некоторым разбросом номинала резисторов.

Наглядно ток утечки проверяют последовательным соединением переменного резистора (для тока утечки 30мА)10 ком с мультиметром со шкалой переменного тока на 100 мА. Резистор желательно брать многооборотный, для плавного изменения сопротивления.

Подключают резистор с мультиметром, подают сеть на дифференциальный автомат и плавным вращением ручки резистора от максимума, засекают ток, при котором отключиться защитное устройство. Далее замеряют сопротивление переменного резистора, оно должно быть приблизительно для тока утечки 30 мА — 7,3ком. Это способ измерения пригоден для электромагнитных и электронных устройств.

Тестируем защиту постоянным магнитом

Магнитом проверить можно только электромеханическое устройство защиты, электронное устройство не сработает.

Это объясняется тем, что когда магнит подносится к одному из боков УЗО, постоянное электромагнитное поле воздействует на дифференциальный трансформатор и вызывает перекос потенциалов на выходе автомата, защита отключается. У электронного вида устройств такого дифференциального трансформатора нет.

Причины короткого замыкания

Замыкание в цепи освещения Основной фактор, вызывающий короткое замыкание – это резкое возрастание силы тока. Оно сопровождается снижением сопротивления электропроводки и приводит к повышению температуры выше нормального значения. Это приводит к тому, что может произойти возгорание легковоспламеняемых материалов.

Почему происходит короткое замыкание:

  • Износ электросети. С течением времени изоляция изнашивается, оголяется часть провода, и на этом участке может произойти короткое замыкание.
  • Влага. Попадание жидкости на изоленту, защищающую скрутку, может произойти во время затопления. Это приводит к отклеиванию липкой стороны ленты и оголению места соединения.
  • Механическое воздействие на изоляцию. Во время ремонтных работ можно случайно вбить гвоздь в место прокладки кабеля и повредить защитный слой. Также перегрызть провода могут грызуны.
  • Перегрузки электросети в течение длительного времени. Приводит к плавлению изоляции.
  • Неправильный выбор номинала автоматического выключателя. Устройство защиты может не среагировать и пропустить скачки напряжения, из-за чего повышается риск возникновения короткого замыкания.
  • Неверно выбраны электропровода для проводки.
  • Слабый и ненадежный контакт в месте соединения двух проводников или при подключении к розетке, выключателю, распределительной коробке. Если электропроводка старая, может встречаться соединение, выполненное методом скрутки. Если неправильно замкнуть контакт, он быстро нагревается, разрушается и может коротнуть.
  • Поломка электроприбора, который приводит к закорачиванию всей электрической цепи.

Основной причиной любых коротких замыканий является поврежденная изоляция проводников или неисправные потребители электроэнергии. В некоторых случаях замыкание возникает по таким причинам, о которых водитель даже не догадывается.

Короткое замыкание в машине, произошедшее из-за нарушенной изоляции, прежде всего связано с неправильной прокладкой проводов. Жгуты могут соприкоснуться с раскаленной трубой глушителя, а отдельные провода нередко пережимаются какими-либо предметами во время проведения ремонта. Некоторые детали автомобиля буквально окружены проводами, поэтому о поврежденной изоляции никто не догадывается до самой поломки.

Существует отдельная категория причин, никак не связанных с электрическим током. На первый взгляд все находится в целости, но, тем не менее, замыкание присутствует. Нередко такие ситуации возникают в определённых условиях, после установки дополнительных деталей и оборудования.

Особенно часто это происходит в районе колесных арок или в задней части кузова. Во время монтажа используются саморезы, которые попадая внутрь пространства повреждают изоляцию проводов, хотя снаружи это совсем незаметно. Вполне естественно, что такую неисправность обнаружить очень проблематично. Поэтому перед началом тюнинга и других работ следует изучить электрическую схему и точно установить места прокладки тех или иных проводов.

Следует особенно отметить причину, связанную с недостаточными знаниями и квалификацией водителя. Человек берется за самостоятельный ремонт, считает, что все делает правильно, а в конце концов его действия приводят к замыканиям. Многие из них проявляются не сразу, а по мере включения некоторых видов оборудования.

Подсветка мультиметра

Функция которой не хватает мультиметру в плохо освещенных местах — подсветка дисплея. Решить эту проблему не сложно, достаточно применить:

  • 2 светодиода последовательно припаянных друг к другу
  • отражатель — обыкновенная золотинка от жвачки
  • микровыключатель любого типа

Проделываете в корпусе сбоку отверстие для выключателя. Приклеиваете отражатель под дисплеем индикации и припаиваете два проводка к контактам кроны.

От них подается питание на выключатель и далее на светодиоды. Конструкция готова.

В конечном результате самодельная доработка подсветки мультиметра будет выглядеть вот так:

Батарейка с подсветкой будет расходоваться значительно быстрее, поэтому не забывайте отключать выключатель когда естественного освещения будет вполне достаточно.

Неполадки, связанные с проверкой сопротивлений

В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:

  1. при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
  2. в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.

В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.

При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).

Как проверить конденсатор мультиметром

Для того, чтобы проверить целостность конденсатора мультиметром, его емкость должна быть от 1 мкФ и выше. Этот трюк получается только с аналоговыми мультиметрами, а также с цифровыми мультиметрами выбора диапазонов, типа таких.

Как вы знаете, конденсаторы бывают полярными и неполярными. Более подробно читайте здесь. Полярные конденсаторы обладают большой емкостью, поэтому их проще проверять на работоспособность. Как же это сделать? Давайте рассмотрим на примере ниже.

У нас имеется электролитический конденсатор.

Мультиметр ставим на режим прозвонки и дотрагиваемся щупами до выводов конденсатора. Внимательно наблюдаем за цифрами на табло. Они должны увеличиваться по мере заряда конденсатора.

Как только я дотронулся до выводов, мультиметр сразу же показал это значение

через пол секунды

и потом значение вышло за предел диапазона, и мультиметр показала единичку.

То есть что можно сказать? В самый начальный момент времени полностью разряженный конденсатор ведет себя, как проводник. По мере того, как он заряжается током от мультиметра, его сопротивление растет, пока не станет очень большим. Раз конденсатор заряжается, значит он рабочий. Все логично.

Конденсаторы меньшей емкости и неполярные конденсаторы с помощью прозвонки можно прозвонить только на короткое замыкание между его обкладками. Поэтому, здесь используется другой железный способ. Просто замерить емкость конденсатора). Здесь я измерил емкость конденсатора, на котором было написано 47 мкФ. Мультиметр показал 48 мкФ. Или погрешность конденсатора, либо мультиметра. Так как мультиметры Mastech считаются довольно неплохими, то спишем на погрешность конденсатора).

Методика прогрузки

При прогрузке измеряются основные характеристики автоматов (номинальный ток, ток срабатывания защиты, время срабатывания защиты при ненормальных режимах) на специальной установке. Все работы по проверке работоспособности проводит специальный персонал, имеющий допуск к таким испытаниям, с удостоверением с отметкой о допуске к специальным работам по испытаниям электрооборудования.

В удостоверении должна быть указана группа по Технике Безопасности, и напряжение, при котором работник может проводить проверки (до или выше 1000в). Удостоверение должно быть подписано главным энергетиком предприятия, которое проводит проверочные работы. Методика прогрузки АВ в заводских условиях должна соответствовать ГОСТу по низковольтной аппаратуре управления и распределения.

Оборудование

Для того чтобы проверить (прогрузить) автоматический выключатель нужно собрать довольно простую схему в которую входит необходимое для испытания оборудование:

  • соединительные провода;
  • КУ — ключ управления;
  • ЛАТР — лабораторный автотрансформатор, для изменения нагрузки; трансформатор нагрузки или нагрузочный трансформатор (НТ);
  • амперметр в качестве шунта;
  • ТТ — трансформатор тока.

Схема устройства для проверки АВ:

Методика прогрузки требует частичного демонтажа аппарата, после проверки исправности — обратного монтажа. Устройство для проведения испытания может быть другого типа, главное чтобы на АВ подавался ток искусственного короткого замыкания с измерением его значения, и учетом времени срабатывания защиты автомата в электрической сети.

Существуют даже специальные комплекты для проверки АВ, например СИНУС-1600, показанный на фото:

Сам процесс

Прогрузка автоматического выключателя с электромагнитным расцепителем осуществляется для определения времени срабатывания автомата в пределах защищаемой зоны по заводским характеристикам. Для этого на устройстве для испытания выставляется ток нагрузки, который равняется максимальному амперажу для данного типа АВ и время, согласно заводским характеристикам.

Для проведения проверки теплового расцепителя на испытательной установке выставляется трехкратный ток нагрузки и максимальное время срабатывания на отключение, согласное заводским характеристикам. Обычно это время от 5 сек. до 0,5мин.

Подробно все действия по проверке автомата рассмотрены на видео:

Все результаты проводимых работ заносятся в протокол. В документе отражается величина наводимого ампеража и время срабатывания автомата. Протокол прогрузки подписывается лицом, проводящим испытания. Образец заполнения протокола проверки предоставлен ниже:

Сроки испытаний

Периодичность испытаний должна быть оговорена в сопроводительных нормативных документах завода-изготовителя, но рекомендуемая проверка — раз в три года при нормальной эксплуатации автоматического выключателя при номинальном токе нагрузки. При аварийных срабатываниях или ненормальной работе АВ периодичность может быть изменена, и должна быть проведена внеплановая проверка. Все рекомендации относятся к бытовым автоматам и выключателям, установленным в производственных помещениях.

Согласно ПУЭ гл.3.2, пункт 1.8.37 прогрузка автоматических выключателей на вводных и секционных аппаратах защиты, сетях аварийного освещения, пожарной сигнализации — 2% АВ групповых сетей. Требования ПУЭ для других электроустановок 1% всех устанавливаемых автоматов.

В случае обнаружения автоматических выключателей, не соответствующих заводским характеристикам, проводится методика проверки всей партии. После проведения прогрузки на каждый аппарат должен быть поставлен штамп с логотипом лаборатории, проводящей испытание, датой проведения и словом «Испытано» или «Годен до … (дата)». Это свидетельствует о том, что автомат прошел проверку и годен к эксплуатации.

Вот по такой методике выполняется проверка автоматических выключателей напряжением до 1000 В. Как вы видите, прогрузить автомат можно даже прибором, собранным в домашних условиях, главное — знать технику безопасности и технологию испытаний. Надеемся, теперь вы знаете, что и как делать, чтобы самостоятельно проверить отключающую способность аппарата защиты.

Будет интересно прочитать:

Источник: ledsshop.ru

Стиль жизни - Здоровье!